期刊文献+
共找到1,018篇文章
< 1 2 51 >
每页显示 20 50 100
A Simulation Study of Hierarchical Bayesian Fusion Spatial Small Area Model for Binary Outcome under Spatial Misalignment
1
作者 Kindie Fentahun Muchie Anthony Kibira Wanjoya Samuel Musili Mwalili 《Open Journal of Statistics》 2021年第6期993-1009,共17页
<p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><spa... <p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><span style="color:#4F4F4F;font-family:Simsun;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana;">&theta;</span><sup><span style="font-family:Verdana;">5</span></sup></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;">from the desired distribution </span><em><span style="font-family:Verdana;">p</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">&theta;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">and estimating the expectation of any </span></span><span><span style="font-family:Verdana;">function </span><em><span style="font-family:Verdana;">h</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">&theta;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;">. Simulation methods can be used for high-dimensional dis</span></span><span style="font-family:Verdana;">tributions, and there are general algorithms which work for a wide variety of models. Markov chain Monte Carlo (MCMC) methods have been important </span><span style="font-family:Verdana;">in making Bayesian inference practical for generic hierarchical models in</span><span style="font-family:Verdana;"> small area estimation. Small area estimation is a method for producing reliable estimates for small areas. Model based Bayesian small area estimation methods are becoming popular for their ability to combine information from several sources as well as taking account of spatial prediction of spatial data. In this study, detailed simulation algorithm is given and the performance of a non-trivial extension of hierarchical Bayesian model for binary data under spatial misalignment is assessed. Both areal level and unit level latent processes were considered in modeling. The process models generated from the predictors were used to construct the basis so as to alleviate the problem of collinearity </span><span style="font-family:Verdana;">between the true predictor variables and the spatial random process. The</span><span style="font-family:Verdana;"> performance of the proposed model was assessed using MCMC simulation studies. The performance was evaluated with respect to root mean square error </span><span style="font-family:Verdana;">(RMSE), Mean absolute error (MAE) and coverage probability of corres</span><span style="font-family:Verdana;">ponding 95% CI of the estimate. The estimates from the proposed model perform better than the direct estimate.</span></span></span></span> </p> <p> <span></span> </p> 展开更多
关键词 Simulation Small Area Estimation Hierarchical Bayesian spatial Misalign-ment fusion Process
在线阅读 下载PDF
A Spatially Heterogeneous Expert Based (SHEB) Urban Growth Model using Model Regionalization 被引量:4
2
作者 Dimitrios Triantakonstantis Giorgos Mountrakis Jida Wang 《Journal of Geographic Information System》 2011年第3期195-210,共16页
Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban gr... Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban growth models. Instead of applying a single method to the entire study area, we segment the study area into different regions and apply targeted algorithms in each subregion. The working hypothesis is that the integration of appropriately selected region-specific models will outperform a globally applied model as it will incorporate further spatial heterogeneity. We examine urban land use changes in Denver, Colorado. Two land use maps from different time snapshots (1977 and 1997) are used to detect the urban land use changes, and 23 explanatory factors are produced to model urbanization. The proposed Spatially Heterogeneous Expert Based (SHEB) model tested decision trees as the underlying modeling algorithm, applying them in different subregions. In this paper the segmentation tested is the division of the entire area into interior and exterior urban areas. Interior urban areas are those situated within dense urbanized structures, while exterior urban areas are outside of these structures. Obtained results on this model regionalization technique indicate that targeted local models produce improved results in terms of Kappa, accuracy percentage and multi-scale performance. The model superiority is also confirmed by model pairwise comparisons using t-tests. The segmentation criterion of interior/exterior selection may not only capture specific characteristics on spatial and morphological properties, but also socioeconomic factors which may implicitly be present in these spatial representations. The usage of interior and exterior subregions in the present study acts as a proof of concept. Other spatial heterogeneity indicators, for example landscape, socioeconomic and political boundaries could act as the basis for improved local segmentations. 展开更多
关键词 URBAN Growth Models spatial HETEROGENEITY MODEL fusion DECISION Trees Denver
暂未订购
基于多重卷积和空谱注意力Transformer的双流高光谱图像分类网络
3
作者 王素玉 吴世国 《北京工业大学学报》 北大核心 2026年第1期75-83,共9页
针对现有的卷积神经网络(convolutional neural network,CNN)方法在高光谱图像分类过程中存在的空谱联合特征利用不充分,对全局特征的关注度不足的问题,设计了一种基于多重卷积和空谱注意力Transformer的双流高光谱图像分类网络,通过CNN... 针对现有的卷积神经网络(convolutional neural network,CNN)方法在高光谱图像分类过程中存在的空谱联合特征利用不充分,对全局特征的关注度不足的问题,设计了一种基于多重卷积和空谱注意力Transformer的双流高光谱图像分类网络,通过CNN和Transformer相结合的双流结构,实现局部和全局特征的充分利用。首先,在CNN支路,设计了一种基于多重卷积的空谱特征融合结构,通过多重卷积实现空间和光谱维特征的充分挖掘和融合;其次,在Transformer网络支路则使用空谱注意力机制捕获整个图像的全局信息;最后,2条分支通过决策级融合实现了高性能的分类效果。基于4个典型数据集的测试结果表明,该算法的分类结果与当前主流算法相比,均有不同程度的提升。 展开更多
关键词 双流网络 多重卷积 空谱注意力机制 高光谱图像 地物分类 特征融合
在线阅读 下载PDF
基于改进YOLOX的无人机航拍图像密集小目标车辆检测 被引量:5
4
作者 张河山 范梦伟 +3 位作者 谭鑫 郑展骥 寇立明 徐进 《吉林大学学报(工学版)》 北大核心 2025年第4期1307-1318,共12页
针对无人机航拍视角下对小目标的检测仍存在漏检现象严重、检测精度低等问题,提出一种改进的YOLOX网络,用于无人机航拍图像的检测。为了增强网络的特征学习能力,在特征融合部分引入自适应空间特征融合(ASFF)模块,并在网络的颈部(Neck)... 针对无人机航拍视角下对小目标的检测仍存在漏检现象严重、检测精度低等问题,提出一种改进的YOLOX网络,用于无人机航拍图像的检测。为了增强网络的特征学习能力,在特征融合部分引入自适应空间特征融合(ASFF)模块,并在网络的颈部(Neck)嵌入坐标注意力机制(CA)。为了加强网络对正样本的学习,将二元交叉熵损失函数替换为变焦距损失函数。实验结果表明:改进后的YOLOX网络具有更好的检测效能,其mAP@50和mAP@50_95分别达到了91.50%和79.65%。在多种交通场景下的可视化结果表明:相较于其他算法,优化后的网络具有更低的漏检率以及更高的检测精度,能够胜任小目标车辆的检测任务,可为高空视角下的车辆多目标跟踪应用提供参考。 展开更多
关键词 交通运输系统工程 小目标车辆检测 损失函数 坐标注意力机制 自适应空间特征融合 YOLOX
原文传递
基于改进YOLOv7tiny的无人机小目标检测 被引量:1
5
作者 倪健 申奥 王峥 《计算机工程与设计》 北大核心 2025年第11期3065-3073,共9页
针对航拍图像中小目标密集遮挡等问题,提出一种基于YOLOv7tiny改进的小目标检测算法。增加一个微小目标检测层,增强模型对特征的捕捉能力;使用自适应空间融合改进FPN结构,促进主干网络输出的非相邻层特征图融合;提出多尺度感知卷积MSACo... 针对航拍图像中小目标密集遮挡等问题,提出一种基于YOLOv7tiny改进的小目标检测算法。增加一个微小目标检测层,增强模型对特征的捕捉能力;使用自适应空间融合改进FPN结构,促进主干网络输出的非相邻层特征图融合;提出多尺度感知卷积MSAConv,增强卷积神经网络捕获目标特征信息的能力;引入RFCA注意力机制模块,解决参数共享问题,增强特征提取能力。实验结果表明,改进后模型在VisDrone2019数据集上mAP50达到了40.6%,较基准模型提升了5.2%。 展开更多
关键词 无人机 YOLOv7tiny 小目标检测 自适应空间融合 感受野注意力 多尺度特征信息 深度学习
在线阅读 下载PDF
改进YOLOv5s的路面坑槽目标检测模型 被引量:1
6
作者 赵江平 王欣然 吴立舟 《中国安全科学学报》 北大核心 2025年第1期67-74,共8页
为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入... 为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入轻量通道注意力(ECA)模块;通过消融试验分析改进模块对检测模型性能的影响,验证目标检测效果,并开发交互式可视化检测界面。结果表明:改进后的模型精度、召回率和平均检测精度分别提升了4.1%、9.9%和5.6%。较原网络有较为显著的提升,具有良好的检测效果,能够满足路面坑槽自动化检测的应用需求,提高巡检效率,减少因路面坑槽导致的交通事故。 展开更多
关键词 YOLOv5s 路面坑槽 目标检测 自适应空间特征融合(ASFF) FasterNet
原文传递
基于特征融合和增强的蚕茧图像分类模型
7
作者 刘莫尘 侯欣 +6 位作者 韦伟 张鑫山 李法德 宋占华 张桂征 梁光健 闫银发 《蚕业科学》 北大核心 2025年第1期59-67,共9页
为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维... 为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维度语义信息;然后引入自适应空间特征融合模块,融合蚕茧浅层图像信息和深层语义信息,解决ResNet41在特征提取过程中出现的信息丢失问题;最后采用挤压和激发模块抑制冗余信息,降低分类偏差。改进模型B-Res41-ASE在测试集中的分类准确率和F 1值分别为93.7%和94.9%,对上车茧的分类精确率为97.8%,对黄斑茧、柴印茧、烂茧、瘪茧、薄皮茧等下茧的分类精确率分别为96.4%、93.7%、98.6%、94.5%、93.1%,相比于改进前模型和常用的细粒度分类模型均有明显优势,且B-Res41-ASE对蚕茧的可判别区域的聚焦更精准。实验结果表明,文中提出的优化方法在分类准确率、鲁棒性等方面优于其他蚕茧分类模型,可为蚕茧智能分拣提供理论依据。 展开更多
关键词 蚕茧分类 双线性池化 自适应空间特征融合 可视化分析
原文传递
MSF-UNet:空间-频率双域特征融合的SAR影像无监督变化检测方法
8
作者 张宇 庄会富 +4 位作者 张祥 谭志祥 刘钰浩 尚靖杰 郭明明 《地球信息科学学报》 北大核心 2025年第9期2213-2229,共17页
【目的】无监督变化检测是合成孔径雷达(Synthetic Aperture Radar,SAR)影像信息提取领域的研究热点之一。然而,现有研究通常使用单一方法获取伪标签,致使伪标签可靠性不足。此外,现有方法主要利用多时相影像的空间域特征提取变化信息,... 【目的】无监督变化检测是合成孔径雷达(Synthetic Aperture Radar,SAR)影像信息提取领域的研究热点之一。然而,现有研究通常使用单一方法获取伪标签,致使伪标签可靠性不足。此外,现有方法主要利用多时相影像的空间域特征提取变化信息,在空间-频率双域特征融合利用方面的探索研究较少。为此,本文提出了一种基于Mamba的空间-频率双域特征融合UNet模型,用于SAR影像无监督变化检测。【方法】首先,该方法利用本文提出的差异影像分割-聚簇融合的伪标签生成方法,获得高质量的伪标签样本数据,以克服深度学习变化检测模型对人工标注样本数据的依赖。然后,构建了基于Mamba和小波卷积的空间-频率双域特征融合UNet变化检测模型,用于提取变化信息。该模型一方面利用Mamba高效提取全局特征,并与卷积网络提取的局部空间特征相融合,另一方面利用小波卷积增强频率域特征提取,进而在类UNet模型上采样过程中实现空间-频率双域特征的互补融合。【结果】为了验证本文提出方法的有效性,在2个SAR影像数据集上进行了实验,并与传统方法和深度学习方法进行了定性和定量比较。与前述对比方法中最好的变化检测结果相比,本文方法在2个数据集上的平均F1_Score提高了2.35%,Kappa系数提高了2.65%,有效提高了变化检测结果的可靠性。【结论】本文提出的方法有效提高了SAR影像变化检测的自动化程度和变化检测结果的可靠性,可为环境监测、城市扩张和灾害评估等研究提供技术支撑。 展开更多
关键词 无监督变化检测 SAR影像 分割-聚簇融合 Mamba 空-频特征融合
原文传递
自然环境下改进YOLOv5对小目标苹果的检测
9
作者 刘子龙 张磊 《系统仿真学报》 北大核心 2025年第8期2124-2138,共15页
针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为... 针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为了SIoU,提高了目标检测框的位置预测精度。将部分普通卷积替换为了深度可分离卷积,减少了计算量。实验结果表明:改进YOLOv5的综合性能要优于原始YOLOv5及其他算法,mAP值相比原始YOLOv5提升了9.6%。 展开更多
关键词 智能农业 坐标注意力机制 感受野 自适应空间特征融合 小目标检测 YOLOv5
原文传递
双维度交叉融合驱动的图像超分辨率重建方法
10
作者 贾晓芬 王子祥 +2 位作者 赵佰亭 粱镇洹 胡锐 《浙江大学学报(工学版)》 北大核心 2025年第12期2516-2526,共11页
针对现有图像超分辨率模型对图像深层语义信息中的底层特征提取不充分,导致重建图像细节丢失的问题,提出从空间、通道双维度交叉融合驱动的图像超分辨率模型.该模型利用Transformer的注意力机制,在空间维度搭建空间密集全局注意力(SIGA)... 针对现有图像超分辨率模型对图像深层语义信息中的底层特征提取不充分,导致重建图像细节丢失的问题,提出从空间、通道双维度交叉融合驱动的图像超分辨率模型.该模型利用Transformer的注意力机制,在空间维度搭建空间密集全局注意力(SIGA),捕捉深层空间区域位置关系;在通道维度搭建通道交叉注意力(CCA),捕获通道间的特征依赖性.SIGA与CCA分别并联深度可分离卷积,增强模型高层语义信息中底层特征的提取能力,并使用空间压缩策略开发交叉融合模块(CFB),保证注意力模块与卷积之间的细粒特征高效融合.级联双维度融合模块,助力深层语义信息全面交汇与聚合,实现恢复图像中的细腻结构.实验表明,在比例因子为4的Urb-an100和Manga109中,相较于最新方法BiGLFE,该模型在PSNR上分别提高了0.52、0.81dB. 展开更多
关键词 图像超分 TRANSFORMER CNN 融合 空间注意力 通道注意力
在线阅读 下载PDF
人本智造:人体行为识别关键技术分析与展望
11
作者 刘庭煜 翁陈熠 +13 位作者 王柏村 郑湃 赵强强 王昊琪 董元发 庄存波 冷杰武 向峰 陈成军 周小舟 李兴宇 焦磊 王晓宇 倪中华 《机械工程学报》 北大核心 2025年第15期57-81,共25页
随着新一代信息技术与制造技术的持续深度融合,以人为中心的智能制造范式正在重塑传统工业生产模式,人体行为识别技术作为实现人本智造的关键使能技术,主要研究人体行为语义的智能识别与理解,展现出广阔应用前景。对工业场景中人体行为... 随着新一代信息技术与制造技术的持续深度融合,以人为中心的智能制造范式正在重塑传统工业生产模式,人体行为识别技术作为实现人本智造的关键使能技术,主要研究人体行为语义的智能识别与理解,展现出广阔应用前景。对工业场景中人体行为识别技术的发展现状、关键挑战与应用前景进行系统探讨,有助于推动人本智造的理论发展与创新实践。首先,以人体行为识别技术的发展脉络为基础,深入分析人体感知、行为建模和行为识别等核心技术的演进过程,为人体行为识别技术的工业化应用奠定技术基础;其次,针对工业场景的特殊需求,重点讨论多模态鲁棒感知系统、多尺度行为理解框架、融合意图理解的人机协同及工业场景的优化部署等关键技术的研究现状;在此基础上,对工业场景人体行为数据集进行系统化分析和质量评估,并重点阐述人体行为识别技术在生产安全管控、生产调度优化、工艺改进和行为改善等典型应用场景的实践进展;最后,结合空间智能、生理认知融合、多模态大语言模型等新兴技术,展望工业人体行为识别技术的未来发展方向。 展开更多
关键词 人本智造 人体行为识别 多模态数据融合 空间智能 人机协作
原文传递
基于时空伪孪生网络的图深度强化学习分区电压控制策略
12
作者 崔杨 祝福 +3 位作者 王议坚 黄思宇 赵钰婷 杨茂 《中国电机工程学报》 北大核心 2025年第21期8295-8307,I0003,共14页
随着高比例分布式光伏接入配电网,电压越限和网损增加等问题愈发显著,而传统电压控制方法难以实时处理新能源出力快速变化导致的电压剧烈波动,无法满足未来新型配电网的安全稳定运行要求。为此,该文提出一种基于时空伪孪生网络的图多智... 随着高比例分布式光伏接入配电网,电压越限和网损增加等问题愈发显著,而传统电压控制方法难以实时处理新能源出力快速变化导致的电压剧烈波动,无法满足未来新型配电网的安全稳定运行要求。为此,该文提出一种基于时空伪孪生网络的图多智能体深度强化学习的配电网分区电压控制策略。首先,在双重约束条件下界定光伏逆变器无功调节范围;其次,将配电网分区电压控制问题建模为分布式部分可观测马尔可夫决策过程(partially observable Markov decisionprocess,POMDP);再次,在算法中嵌入动态图注意力网络和长短期记忆(longshort-termmemory,LSTM)网络组成的时空伪孪生网络,生成时空融合的特征向量;最后,在改进的IEEE141节点配电网系统中进行算例验证。结果表明,相比于传统电压控制方法,所提算法在有效减小电压偏差和功率损耗的同时,还具备较强泛化性和实时性,可为实现新型配电网分区电压控制提供灵活高效的解决方案。 展开更多
关键词 伪孪生网络 多智能体 深度强化学习 分区电压控制 动态图注意力网络 时空融合
原文传递
三维人体姿态估计中的多尺度时空特征融合
13
作者 张宇 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 北大核心 2025年第1期75-88,共14页
针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注... 针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注意力机制和多层感知机构建空间多尺度特征融合模块,融合关节点、肢体和上/下身三个空间多尺度特征,得到初步姿态特征序列;最后建立时序多尺度编码进行时序特征融合获得最终姿态特征序列,并通过时序解码,优化生成细化的三维人体姿态.在Human3.6M数据集上的实验结果表明,所提方法的平均每关节位置P-MPJPE和速度误差MPJVE分别为33.6和2.4,较对比方法降低了2.3%和4.0%,能够降低计算复杂度,提高三维人体姿态估计精度,生成准确、平滑的三维人体姿态估计结果.此外,在HumanEva-I数据集的测试结果表明,所提方法也具有一定的泛化性. 展开更多
关键词 三维人体姿态估计 多尺度特征 自注意力机制 时空特征融合 时序编码
在线阅读 下载PDF
考虑时空融合环境因子的土壤含水率机器学习反演模型优化
14
作者 李瑞平 赵建伟 +3 位作者 王福强 王欢 于欣 苗存立 《农业机械学报》 北大核心 2025年第8期370-379,共10页
植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地... 植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地表温度(LST)和植被干旱指数(TVDI)作为环境变量,结合土地利用类型、土壤质地、蒸散量、高程、坡向、坡度、原始影像植被干旱指数(TVDI)、归一化植被指数(NDVI)、地表温度(LST),以及气温、降水量和风速作为建模因子,构建基于多元线性逐步回归(MLSR)、随机森林(RF)和梯度提升机(GBM)3种方法的土壤含水率反演模型,并进行优化分析。研究结果表明:地表温度是影响土壤含水率空间变异性的关键影响因素(R为-0.46),其次为蒸散量(-0.43)、气温(-0.39)、融合后归一化植被指数(0.38)、原始归一化植被指数(0.36)、土地利用类型(0.31)、融合后干旱植被指数(-0.3)、原始干旱植被指数(-0.28)、降水量(0.27)、土壤质地(0.27)、坡向(-0.25)、高程(0.26)、坡度(-0.20)及风速(-0.20);MLSR表现出较强的模型线性处理能力。非线性处理中RF回归模型最稳定,GBM模型则具有最高的精确度,R^(2)为0.910,MAE、MSE及RMSE分别为2.12%、6.89%和2.62%;多元逐步回归方法在土壤含水率反演过程中预测准确率较低,显示出线性模型在处理复杂关系处理时的局限性;OL-STARFM融合方法提取的TVDI和NDVI与土壤含水率的相关系数分别为-0.41和0.38,均高于单一影像提取的植被指数与土壤含水率的相关性,并且有效提高了土壤含水率反演模型的精度,表明该方法在土壤含水率反演模型构建中的可行性,为获取连续的高时空分辨率影像进而有效连续监测土壤含水率提供了理论依据。 展开更多
关键词 土壤含水率 遥感反演模型 时空融合 环境因子 OL-STARFM 机器学习算法
在线阅读 下载PDF
一种改进YOLOv8的无人机红外影像目标轻量化精确检测方法
15
作者 郭海涛 张亦弛 +3 位作者 陈明岩 朱坤 卢俊 周一 《测绘科学技术学报》 2025年第2期146-153,共8页
无人机红外影像目标检测在农业、商业等领域都有广泛的研究需求和应用场景。针对当前无人机红外影像中目标检测精度低,特别是小目标难以有效检测的问题,并为了便于模型部署,基于YOLOv8算法,提出了一种红外目标轻量化高精度检测算法(YOLO... 无人机红外影像目标检测在农业、商业等领域都有广泛的研究需求和应用场景。针对当前无人机红外影像中目标检测精度低,特别是小目标难以有效检测的问题,并为了便于模型部署,基于YOLOv8算法,提出了一种红外目标轻量化高精度检测算法(YOLOv8-PFAF)。该算法在YOLOv8的基础上,增加一个针对小目标的额外检测头,同时引入自适应空间特征融合策略(ASFF)改进检测头,显著提升了红外目标检测精度。平均精度均值(交并比阈值为50%)提高1.2%,综合平均精度均值(交并比阈值为50%~95%)提高2%。设计并融入了C2f_PConv模块,有效减少特征图冗余,降低模型尺寸,更好地满足后期实时检测中模型部署的需要。 展开更多
关键词 无人机红外影像 目标检测 YOLOv8算法 小目标 自适应空间特征融合策略 轻量化
在线阅读 下载PDF
结合特征融合与混合注意力的细粒度图像分类
16
作者 潘卫华 魏明月 苏攀 《计算机应用与软件》 北大核心 2025年第9期210-219,共10页
为充分提取细粒度图像中的局部关键特征,提出特征融合与混合注意力相结合的细粒度图像分类算法。该文利用SE(Squeeze-and-Excitation Networks)引入通道注意力,提高特征提取能力;提出特征融合,充分融合跨通道交互后的低层和高层语义信息... 为充分提取细粒度图像中的局部关键特征,提出特征融合与混合注意力相结合的细粒度图像分类算法。该文利用SE(Squeeze-and-Excitation Networks)引入通道注意力,提高特征提取能力;提出特征融合,充分融合跨通道交互后的低层和高层语义信息;改进选择性稀疏采样(Selective Sparse Sampling,S3N)方法引入空间注意力获取显著采样图;构造一个能够端到端训练的两分支分类模型,以交叉验证的方式提高分类准确率。该算法在CUB-200-2011、FGVC-Aircraft和Stanford Cars数据集上分别达到了87.84%、93.59%和94.25%的分类准确率,优于骨干网络和当前主流算法。 展开更多
关键词 细粒度图像分类 通道注意力 空间采样 特征融合 交叉验证
在线阅读 下载PDF
基于多浮标空间多特征融合的海水溶解氧浓度预测
17
作者 朱奇光 申震 +4 位作者 李享 魏祯 乔文静 张淋淞 陈颖 《海洋学报》 北大核心 2025年第1期104-116,共13页
溶解氧浓度是衡量海水水质的重要指标之一。为了及时掌握海水水质变化情况,降低海水污染风险及其带来的损失,建立海洋水质参数预测机制至关重要。为此,本文提出了一种基于浮标网络时空信息融合和改进生成对抗网络(Generative Adversaria... 溶解氧浓度是衡量海水水质的重要指标之一。为了及时掌握海水水质变化情况,降低海水污染风险及其带来的损失,建立海洋水质参数预测机制至关重要。为此,本文提出了一种基于浮标网络时空信息融合和改进生成对抗网络(Generative Adversarial Networks,GAN)的海水溶解氧浓度预测模型,旨在整合监测区域内浮标网络的拓扑信息并实现浮标传感器的多特征融合。该模型利用图注意力网络(Graph Attention Mechanism,GAT)挖掘不同近邻点对目标节点的影响,计算邻接节点的权重,从而捕获浮标数据的时空特征;通过双头注意力机制与双时间尺度更新规则(Two Time-Scale Update Rule,TTUR)优化GAN预测网络及网络训练过程,改善生成对抗网络的训练速度平衡问题,提高生成器网络的拟合效果。以均方误差、均方根误差、平均绝对误差与决定系数为评价指标进行模型预测性能对比,结果表明,所提出模型的各项评价指标均优于其他模型,能够有效挖掘多浮标的空间信息,克服了传统方法在海水溶解氧浓度预测中存在的精度低、无法灵活利用历史空间数据、训练稳定性差和速度慢等不足,可为海洋水质监测及预测提供重要的技术支撑。 展开更多
关键词 溶解氧浓度预测 空间多特征融合 GAT GAN TTUR
在线阅读 下载PDF
基于多诊断参数分析的一维内爆热斑离子温度时空分布计算方法
18
作者 唐琦 刘品阳 +3 位作者 宋仔峰 陈伯伦 刘中杰 杨家敏 《物理学报》 北大核心 2025年第10期178-190,共13页
惯性约束聚变中,热斑离子温度是决定聚变增益的关键参数,热斑离子温度时空分布能够揭示热斑能量的沉积与耗散过程,针对此物理研究需求,提出了一种基于多诊断参数分析的一维内爆热斑离子温度时空分布计算方法.本文以冲击压缩内爆为例,分... 惯性约束聚变中,热斑离子温度是决定聚变增益的关键参数,热斑离子温度时空分布能够揭示热斑能量的沉积与耗散过程,针对此物理研究需求,提出了一种基于多诊断参数分析的一维内爆热斑离子温度时空分布计算方法.本文以冲击压缩内爆为例,分析了离子温度时空分布的特性,建立了离子温度时空分布数学模型.利用计算算例作为模拟实验给出了离子温度相关的多个关键诊断量,以此作为离子温度时空分布求解的约束.通过遗传算法计算出了模型中的待定参数,计算参数给出的离子温度时空分布与模拟实验基本相符,验证了本方法的有效性.本方法可以应用于近一维内爆实验热斑离子温度时空分布的计算,为更深入地了解内爆热斑的形成与演化过程提供了实验观测手段. 展开更多
关键词 惯性约束聚变 离子温度时空分布 中子诊断 多参数分析
在线阅读 下载PDF
基于时域局部空间熵与空域多尺度特征的红外小目标检测
19
作者 李恒超 刘艳琼 +1 位作者 尹加杰 雷森 《西南交通大学学报》 北大核心 2025年第6期1527-1536,共10页
红外成像技术广泛应用于军事和民用领域,其中红外小目标检测作为应用中不可或缺的环节,具有重要的实际价值.针对现有方法无法有效区分类目标稀疏结构与真实目标的问题,本文提出一种融合时域局部空间熵与空域多尺度特征的红外小目标检测... 红外成像技术广泛应用于军事和民用领域,其中红外小目标检测作为应用中不可或缺的环节,具有重要的实际价值.针对现有方法无法有效区分类目标稀疏结构与真实目标的问题,本文提出一种融合时域局部空间熵与空域多尺度特征的红外小目标检测算法.在时域分支上首先设计基于图像块相似性度量的密度峰值聚类算法,定位红外小目标候选区域,减少对背景的冗余计算.进一步地,提出一种基于帧间局部差异的时域局部空间熵,充分挖掘目标与背景熵值在局部区域的不同变化特性,解决类目标稀疏结构引起的虚警问题.此外,引入空域多尺度特征提取分支,构建时空融合特征,降低候选区域定位中的漏检率,提高对不同尺度小目标的检测能力.在5组不同场景的序列上与9种算法进行对比,本文所提出方法的BSF(background suppression factor)均优于其他方法的,在表现最好的序列5上其BSF值是次优方法的2.02倍,且在ROC(receiver operating characteristic curve)曲线中4组序列上表现为最优.综上所述,相比于其他方法,所提出方法能够在类目标稀疏结构干扰下精准检出小目标. 展开更多
关键词 红外小目标检测 密度峰值聚类 局部空间熵 多尺度特征 空时特征融合
在线阅读 下载PDF
基于多尺度空间-光谱特征提取的颜料高光谱图像分类方法
20
作者 汤斌 罗希玲 +6 位作者 王建旭 范文奇 孙玉宇 刘家路 唐欢 赵雅 钟年丙 《光谱学与光谱分析》 北大核心 2025年第8期2364-2372,共9页
颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能... 颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能为科学修复提供指导依据。然而,传统颜料分析受限于样品尺寸、表面平整度,且部分分析方法需要取样,对文物造成不可逆损伤,这使得古书画颜料的检测面临诸多挑战。高光谱成像技术(HSI)凭借其无损检测、广域扫描及获取完整光谱信息的优势,成为文物颜料分析的重要工具。HSI克服了样品表面不平整、尺寸受限等问题,能够从不同波段获取细致的光谱和空间信息,帮助提取颜料的微观特征。旨在利用HSI技术实现古书画颜料的精准分类与深度特征提取,以应对复杂场景下的颜料检测挑战。为此,我们提出了一种多尺度空间-光谱特征融合的方法,在分析过程中结合不同层次的信息:利用光谱-空间注意力机制捕捉细节特征,并通过视觉转换器(ViT)模型获取图像整体的高层语义信息,从而增强对复杂颜料特征的表示能力和分类性能。实验结果表明,该方法在模拟画作样品上的分类性能显著优于传统和其他深度学习模型:与支持向量机(SVM)相比,分类精度提升了34.35%;相较于HyBridSN与SSRN模型,精度分别提高了8.93%和5.6%。本方法不仅提升了颜料检测的准确性,还为古书画的科学修复和价值保护提供了无损、可靠的技术支持,并为文物保护的智能化发展奠定了技术基础。 展开更多
关键词 高光谱成像 多尺度特征融合 Vision Transformer 光谱-空间注意力 颜料分类
在线阅读 下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部