期刊文献+
共找到386篇文章
< 1 2 20 >
每页显示 20 50 100
Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout 被引量:5
1
作者 Jiqiang ZHANG Xiangwei KONG +3 位作者 Xueyi LI Zhiyong HU Liu CHENG Mingzhu YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期301-312,共12页
Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic ef... Bearing pitting,one of the common faults in mechanical systems,is a research hotspot in both academia and industry.Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic efficiency.This study proposes a novel bearing fault diagnosis method based on deep separable convolution and spatial dropout regularization.Deep separable convolution extracts features from the raw bearing vibration signals,during which a 3×1 convolutional kernel with a one-step size selects effective features by adjusting its weights.The similarity pruning process of the channel convolution and point convolution can reduce the number of parameters and calculation quantities by evaluating the size of the weights and removing the feature maps of smaller weights.The spatial dropout regularization method focuses on bearing signal fault features,improving the independence between the bearing signal features and enhancing the robustness of the model.A batch normalization algorithm is added to the convolutional layer for gradient explosion control and network stability improvement.To validate the effectiveness of the proposed method,we collect raw vibration signals from bearings in eight different health states.The experimental results show that the proposed method can effectively distinguish different pitting faults in the bearings with a better accuracy than that of other typical deep learning methods. 展开更多
关键词 Batch normalization convolutional neural network Fault diagnosis Similarity pruning spatial dropout
原文传递
Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks
2
作者 Jiangxia Han Liang Xue +5 位作者 Ying Jia Mpoki Sam Mwasamwasa Felix Nanguka Charles Sangweni Hailong Liu Qian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1323-1340,共18页
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi... Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN. 展开更多
关键词 Physical-informed neural networks(PINN) flow in porous media convolutional neural networks spatial heterogeneity machine learning
在线阅读 下载PDF
Deep learning neural networks for spatially explicit prediction of flash flood probability 被引量:7
3
作者 Mahdi Panahi Abolfazl Jaafari +5 位作者 Ataollah Shirzadi Himan Shahabi Omid Rahmati Ebrahim Omidvar Saro Lee Dieu Tien Bui 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期370-383,共14页
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite... Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding. 展开更多
关键词 spatial modeling Machine learning convolutional neural networks Recurrent neural networks GIS Iran
在线阅读 下载PDF
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition 被引量:2
4
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
在线阅读 下载PDF
Enhanced Detection of Glaucoma on Ensemble Convolutional Neural Network for Clinical Informatics 被引量:1
5
作者 D.Stalin David S.Arun Mozhi Selvi +4 位作者 S.Sivaprakash P.Vishnu Raja Dilip Kumar Sharma Pankaj Dadheech Sudhakar Sengan 《Computers, Materials & Continua》 SCIE EI 2022年第2期2563-2579,共17页
Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood v... Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods. 展开更多
关键词 Glaucoma and diabetic retinopathy detection ensemble convolutional neural network spatially based ellipse fitting curve optic disk optic cup
在线阅读 下载PDF
考虑空间相关性的MSCNN LSTM Attention能见度预测模型
6
作者 王小建 苏彤 +6 位作者 马飞 林智婕 白元旦 郭庆元 魏俊涛 黄凯 徐玉凤 《安全与环境学报》 北大核心 2025年第4期1622-1632,共11页
准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convoluti... 准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convolutional Neural Network, MSCNN)提取能见度以预测各影响因素下不同精细度的空间特征,并将其进行线性融合得到多因素空间特征,实现对能见度预测影响因素的空间特征提取;利用Attention机制加强对关键信息关注的优势以对长短期记忆神经网络(Long-Short Term Memory Neural Network, LSTM)方法进行改进,进而增强模型对重要时序信息关注的能力和模型预测的准确性,实现在考虑影响因素空间相关性下对能见度的预测。以2021—2023年西安市逐时气象数据和污染物数据为试验数据,采用均方根误差(RMSE)、平均绝对误差(MAE)和R2指标对模型进行评价。试验结果显示,研究模型MAE下降26.3%~39.1%,RMSE下降25%~40%,R2提升3.7%~16.4%,能见度预测精度较高。 展开更多
关键词 环境科学技术基础学科 能见度预测 空间相关性 一维多尺度卷积神经网络 长短期记忆神经网络 注意力机制
原文传递
Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks
7
作者 Motasem S.Alsawadi Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2022年第6期4643-4658,共16页
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ... Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments. 展开更多
关键词 Skeleton split strategies spatial temporal graph convolutional neural networks skeleton joints action recognition
在线阅读 下载PDF
TSCNN:面向可穿戴心电信号监测与分析的卷积神经网络 被引量:4
8
作者 孟琭 葛康 +1 位作者 宋阳 杨东溟 《中国图象图形学报》 CSCD 北大核心 2020年第10期2281-2292,共12页
目的可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴... 目的可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴作为心电信号监测和采集设备制作了可穿戴设备的心电数据集。针对可穿戴心电数据干扰多、数据量大等特点,本文提出了一种针对可穿戴设备获得的心电信号进行自动分类的深层卷积神经网络,称之为时空卷积神经网络(time-spatial convolutional neural networks,TSCNN)。方法将原始的长时间心电信号分割为单个的心搏并与滤波后不同频段的心搏数据组合成十通道的数据输入到TSCNN中。TSCNN对每个心搏使用时间卷积和空间滤波来提取丰富的特征。采用小卷积核级联卷积的方式提高分类性能,并降低网络的参数量和计算量。结果在本文制作的心电数据集上进行了测试,并与其他4种心电分类算法:CNN(convolutional neural networks)、RNN(recurrent neural networks)、1-DCNN(1-dimensional convolution neural networks)和DCN(dense convolutional networks)进行了比较。实验结果显示,本文方法的分类准确率达到91.16%,优于其他4种方法。结论本文方法面向可穿戴心电数据,获得了较好的分类性能,可以有效监控穿戴者是否出现了心电异常情况。 展开更多
关键词 可穿戴设备 可穿戴心电数据集 心脏监测 卷积神经网络 空间滤波
原文传递
基于双重注意力网络和内容修复损失的艺术风格迁移
9
作者 祝亮亮 郭业才 《浙江理工大学学报(自然科学版)》 2026年第1期105-113,共9页
针对现有艺术风格迁移网络在迁移过程中难以精确保持生成图像的结构细节,以及生成图像中来自风格图像映射痕迹明显的问题,提出了一种基于双重注意力网络和内容修复损失的艺术风格迁移网络DatNet。该网络通过卷积核可动态调整的轻量化通... 针对现有艺术风格迁移网络在迁移过程中难以精确保持生成图像的结构细节,以及生成图像中来自风格图像映射痕迹明显的问题,提出了一种基于双重注意力网络和内容修复损失的艺术风格迁移网络DatNet。该网络通过卷积核可动态调整的轻量化通道注意力模块,实现对图像特征分布的再优化;同时在空间注意模块中,通过学习相关矩阵的高阶特征,实现对风格特征的精细建模。另外,设计了一种内容修复损失函数,以内容图像为双输入生成图像,并与原始内容图像在多层特征空间中进行差异约束,以增强网络对生成图像结构特征的保持能力。DatNet与主流网络在客观指标上进行横向对比实验,结果表明,基于双重注意力网络和内容修复损失的艺术风格迁移生成的图像,在结构相似性(Structure similarity index measure,SSIM)和峰值信噪比(Peak signal-to-noise ratio,PSNR)上较MicroAST分别提升了0.01和0.66。该网络将通道维度特征动态优化与空间相关矩阵的高阶特征匹配相结合,计算以内容图像为双输入的生成图像与内容图像之间多层特征的差异,在显著提升生成图像内容结构清晰度的同时,有效降低了风格图像对生成图像的映射干扰,展现出较高的实用价值。 展开更多
关键词 深度学习 卷积神经网络 风格迁移 空间注意力 通道注意力
原文传递
Luojia-HSSR:A high spatial-spectral resolution remote sensing dataset for land-cover classification with a new 3D-HRNet 被引量:3
10
作者 Yue Xu Jianya Gong +4 位作者 Xin Huang Xiangyun Hu Jiayi Li Qiang Li Min Peng 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第3期289-301,共13页
High Spatial and Spectral Resolution(HSSR)remote-sensing images can provide rich spectral bands and detailed ground information,but there is a relative lack of research on this new type of remote-sensing data.Although... High Spatial and Spectral Resolution(HSSR)remote-sensing images can provide rich spectral bands and detailed ground information,but there is a relative lack of research on this new type of remote-sensing data.Although there are already some HSSR datasets for deep learning model training and testing,the data volume of these datasets is small,resulting in low classification accuracy and weak generalization ability of the trained models.In this paper,an HSSR dataset Luojia-HSSR is constructed based on aerial hyperspectral imagery of southern Shenyang City of Liaoning Province in China.To our knowledge,it is the largest HSSR dataset to date,with 6438 pairs of 256×256 sized samples(including 3480 pairs in the training set,2209 pairs in the test set,and 749 pairs in the validation set),covering area of 161 km2 with spatial resolution 0.75 m,249 Visible and Near-Infrared(VNIR)spectral bands,and corresponding to 23 classes of field-validated ground coverage.It is an ideal experimental data for spatial-spectral feature extraction.Furthermore,a new deep learning model 3D-HRNet for interpreting HSSR images is proposed.The conv-neck in HRNet is modified to better mine the spatial information of the images.Then,a 3D convolution module with attention mechanism is designed to capture the global-local fine spectral information simultaneously.Subsequently,the 3D convolution is inserted into the HRNet to optimize the performance.The experiments show that the 3D-HRNet model has good interpreting ability for the Luojia-HSSR dataset with the Frequency Weighted Intersection over Union(FWIoU)reaching 80.54%,indicating that the Luojia-HSSR dataset constructed in this paper and the proposed 3D-HRnet model have good applicable prospects for processing HSSR remote sensing images. 展开更多
关键词 High spatial and Spectral Resolution(HSSR) remotesensing image classification deep learning convolutional neural network(CNN)
原文传递
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
11
作者 付磊 任德均 +3 位作者 吴华运 郜明 邱吕 胡云起 《计算机应用》 CSCD 北大核心 2020年第6期1824-1829,共6页
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割... 在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割算法。该分割算法的基础框架为Fast-SCNN,而为弥补原有网络分割尺寸的鲁棒性不足,借鉴了SENet的通道间信息的利用与多级跳跃连接的思想,具体为网络进一步下采样提取深层特征,在解码阶段将上采样操作融合SELayer模块,同时增加两次与网络浅层的跳跃连接。设计四组对比实验,在气泡数据集上以平均交并比(MIoU)与算法单张分割时间作为评价指标。实验结果表明,改进Fast-SCNN的综合性能最好,其MIoU为97.08%,其预处理后的医用塑瓶的平均检测时间为24.4 ms,其边界分割准确率较Fast-SCNN提升了2.3%,增强了对微小气泡的分割能力,而且该网络的MIoU相较现有的U-Net提升了0.27%,时间上降低了7.5 ms,综合检测性能远超过全卷积神经网络(FCN-8s)。该算法能够有效地对较小的、边缘不清晰的气泡进行分割,满足对气泡缺陷实时分割检测的工程要求。 展开更多
关键词 语义分割 图像处理 快速分割卷积神经网络(Fast-scnn) SENet 缺陷检测
在线阅读 下载PDF
Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism
12
作者 Lujuan Deng Ruochong Fu +3 位作者 Zuhe Li Boyi Liu Mengze Xue Yuhao Cui 《Computers, Materials & Continua》 SCIE EI 2024年第3期4071-4089,共19页
Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion s... Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper. 展开更多
关键词 Multispectral pedestrian detection convolutional neural networks depth separable convolution spatially reweighted attention mechanism
在线阅读 下载PDF
A convolutional neural network to detect possible hidden data in spatial domain images
13
作者 Jean De La Croix Ntivuguruzwa Tohari Ahmad 《Cybersecurity》 EI CSCD 2024年第1期37-52,共16页
Hiding secret data in digital multimedia has been essential to protect the data.Nevertheless,attackers with a steganalysis technique may break them.Existing steganalysis methods have good results with conventional Mac... Hiding secret data in digital multimedia has been essential to protect the data.Nevertheless,attackers with a steganalysis technique may break them.Existing steganalysis methods have good results with conventional Machine Learning(ML)techniques;however,the introduction of Convolutional Neural Network(CNN),a deep learning paradigm,achieved better performance over the previously proposed ML-based techniques.Though the existing CNN-based approaches yield good results,they present performance issues in classification accuracy and stability in the network training phase.This research proposes a new method with a CNN architecture to improve the hidden data detection accuracy and the training phase stability in spatial domain images.The proposed method comprises three phases:pre-processing,feature extraction,and classification.Firstly,in the pre-processing phase,we use spatial rich model filters to enhance the noise within images altered by data hiding;secondly,in the feature extraction phase,we use two-dimensional depthwise separable convolutions to improve the signal-to-noise and regular convolutions to model local features;and finally,in the classification,we use multi-scale average pooling for local features aggregation and representability enhancement regardless of the input size variation,followed by three fully connected layers to form the final feature maps that we transform into class probabilities using the softmax function.The results identify an improvement in the accuracy of the considered recent scheme ranging between 4.6 and 10.2%with reduced training time up to 30.81%. 展开更多
关键词 Information security spatial domain steganalysis Deep learning convolutional neural network INFRASTRUCTURE
原文传递
Design and implementation of gasifier flame detection system based on SCNN
14
作者 WU Jin DAI Wei +1 位作者 WANG Yu ZHAO Bo 《High Technology Letters》 EI CAS 2022年第4期401-410,共10页
Flame detection is a research hotspot in industrial production,and it has been widely used in various fields.Based on the ignition and combustion video sequence,this paper aims to improve the accuracy and unintuitive ... Flame detection is a research hotspot in industrial production,and it has been widely used in various fields.Based on the ignition and combustion video sequence,this paper aims to improve the accuracy and unintuitive detection results of the current flame detection methods of gasifier and industrial boiler.A furnace flame detection model based on support vector machine convolutional neural network(SCNN)is proposed.This algorithm uses the advantages of neural networks in the field of image classification to process flame burning video sequences which needs detailed analysis.Firstly,the support vector machine(SVM)with better small sample classification effect is used to replace the Softmax classification layer of the convolutional neural network(CNN)network.Secondly,a Dropout layer is introduced to improve the generalization ability of the network.Subsequently,the area,frequency and other important parameters of the flame image are analyzed and processed.Eventually,the experimental results show that the flame detection model designed in this paper is more accurate than the CNN model,and the accuracy of the judgment on the flame data set collected in the gasifier furnace reaches 99.53%.After several ignition tests,the furnace flame of the gasifier can be detected in real time. 展开更多
关键词 support vector machine convolutional neural network(scnn) support vector machine(SVM) flame detection flame image processing GASIFIER
在线阅读 下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
15
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
16
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于双重模糊注意力机制的图像分类方法
17
作者 顾苏杭 王冶 +1 位作者 张远鹏 焦竹青 《电子测量技术》 北大核心 2025年第19期193-204,共12页
人类视觉系统在处理外界信息时,往往聚焦于目标的关键特征和结构,同时弱化非目标区域。此外,在经典的CNN模型中,图像中的噪声经逐层传播可能会干扰目标关键信息表征,导致无法准确提取特征。为此,本文提出一种基于双重模糊注意力机制的... 人类视觉系统在处理外界信息时,往往聚焦于目标的关键特征和结构,同时弱化非目标区域。此外,在经典的CNN模型中,图像中的噪声经逐层传播可能会干扰目标关键信息表征,导致无法准确提取特征。为此,本文提出一种基于双重模糊注意力机制的图像分类方法DFAM-CNN。首先,针对CNN卷积层输出的特征图,通过引入模糊逻辑技术设计了模糊通道注意力机制和模糊空间注意力机制,并利用这两个机制在特征图的通道和空间方向上进行映射变换,生成与原特征图一一对应的重要模糊化特征图。其次,基于所有重要模糊化特征图,实现所有特征图通道权重和特征图内每个元素权重的计算,从而在通道和空间方向上突出与目标相关的特征。最后,通过模糊聚合操作对特征图进行降维,同时保留与目标相关的特征。为验证DFAM-CNN的有效性,在公开数据集MedMNIST和应用案例数据集上进行了大量的实验,实验结果验证了DFAM-CNN的有效性。特别地,与传统的最大池化方法相比,DFAM-CNN在BreastMNIST和DermaMNIST子集上的准确率分别提升了8.67%和7.40%。 展开更多
关键词 卷积神经网络 模糊逻辑技术 模糊通道注意力机制 模糊空间注意力机制
原文传递
计及NWP信息缺失的数据共享与GRA权重优化的分布式光伏电站功率预测
18
作者 杨锡运 杨岩 +2 位作者 孟令卓超 彭琰 王晨旭 《电测与仪表》 北大核心 2025年第4期172-179,共8页
由于光伏发电的出力具有很强的间歇性和波动性,大规模光伏电站的接入会冲击电网的稳定性,因此对光伏出力进行精准预测至关重要。此外,由于部分光伏电站无法获得用于功率预测的相关数值天气预报(numerical weather prediction, NWP)信息... 由于光伏发电的出力具有很强的间歇性和波动性,大规模光伏电站的接入会冲击电网的稳定性,因此对光伏出力进行精准预测至关重要。此外,由于部分光伏电站无法获得用于功率预测的相关数值天气预报(numerical weather prediction, NWP)信息,这对电网的安全稳定运行又提出了新的挑战。基于此,文中提出一种基于数据共享和灰色关联度分析(grey relation analysis, GRA)权重优化的分布式光伏电站功率预测模型。利用K-means算法对光伏电站进行出力空间相关性聚类,构建多电站数据共享集群,通过相似日数据筛选和BP(back propagation)神经网络神经网络对单个参考电站进行出力预测,利用GRA对参考电站进行权重优化,并通过一维卷积神经网络(1D convolutional neural network, 1DCNN)对缺失NWP数据的目标电站出力进行预测。以河北省部分市十个分布式光伏电站进行算例分析,结果表明晴天预测的均方根误差为3.34%,非晴天预测的均方根误差为9.15%,具有较高的准确性和可行性,为电网的稳定运行奠定了基础。 展开更多
关键词 分布式光伏电站 空间相关性 数据共享 权重优化 一维卷积神经网络
在线阅读 下载PDF
时空数据准确性检测方法研究
19
作者 张可佳 尹靖淞 +3 位作者 刘涛 徐意行 白玉磊 田梦晴 《计算机与数字工程》 2025年第11期3092-3097,共6页
时空数据准确性检测方法通常用于解决高速时空数据涌入情况下的数据方案优化或准确性检测问题。在时空异质环境中,受到数据对象分散、时序关系不确定、耦合关系空变等因素的影响,传统方法在解决同类问题时很难保证检测质量。论文结合了... 时空数据准确性检测方法通常用于解决高速时空数据涌入情况下的数据方案优化或准确性检测问题。在时空异质环境中,受到数据对象分散、时序关系不确定、耦合关系空变等因素的影响,传统方法在解决同类问题时很难保证检测质量。论文结合了空间加权、图卷积神经网络和时间卷积网络各自的优势,提出一种能够解决时空数据准确性检测问题的方法。首先,对时空数据进行建模,生成具有时空特征的时变图组。其次,融合图卷积神经网络和时间卷积网络提取并分析数据的时空特征,同时优化了权重矩阵的计算方式以提高检测准确性。最后,在真实应用场景测试,通过设计一系列对比实验验证了这种方法在检测准确率上具有明显优势。 展开更多
关键词 数据准确性 时空数据 图卷积神经网络 时间卷积网络 空间加权
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究 被引量:1
20
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 二维卷积神经网络(2DCNN) 机器学习 时空特征 快速预报
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部