期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s的舰船小目标检测方法研究
1
作者 师红宇 蔡自桂 +1 位作者 杜文 张哲于 《舰船电子工程》 2025年第2期34-38,73,共6页
海面舰船目标检测容易受陆地、海浪等背景的干扰。针对舰船小目标检测精度低和鲁棒性差的问题,提出一种改进的舰船目标检测模型CWMA-YOLOv5s。首先,设计具有多分支跨层连接的C2f模块丰富多目标舰船梯度流信息。然后,设计并实现了残差多... 海面舰船目标检测容易受陆地、海浪等背景的干扰。针对舰船小目标检测精度低和鲁棒性差的问题,提出一种改进的舰船目标检测模型CWMA-YOLOv5s。首先,设计具有多分支跨层连接的C2f模块丰富多目标舰船梯度流信息。然后,设计并实现了残差多头自注意力融合模块优化特征融合效果。其次,改进Predection网络,设计SCP结构,提高了舰船目标的显著度。最后,引入改进的WIOU损失函数解决CIOU损失函数带来的梯度爆炸和模型提前退化问题。实验结果表明,与YOLOv5s模型相比,该模型在MASATI-v2数据集上,精度提高了13.1%,召回率提高了12.8%,mAP@50提高了6.8%。与其他同类型检测算法相比,该算法拥有更好的学习能力,整体检测精度达到了82.3%,具有较强的鲁棒性。 展开更多
关键词 舰船检测 多头自注意力机制 空间上下文金字塔 WIOU损失函数
在线阅读 下载PDF
CIEFRNet:面向高速公路的抛洒物检测算法 被引量:2
2
作者 李旭 宋焕生 +3 位作者 史勤 张朝阳 刘泽东 孙士杰 《计算机工程与应用》 CSCD 北大核心 2024年第5期336-346,共11页
高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征... 高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征提纯的抛洒物检测算法,记为CIEFRNet。设计了一种融合上下文Transformer的主干特征提取模块(CSP-COT),充分挖掘局部静态上下文信息和全局动态上下文信息,增强小抛洒物的特征表示;主干网络中使用改进的空间金字塔池化(ISPP),通过级联的空洞卷积实现特征的多尺度下采样,减轻目标细节信息的损失;为提高特征融合能力,设计了特征提纯模块(CNAB),其中嵌入了提出的一种混合注意力机制(ECSA),可抑制图像背景噪声,强化微小抛洒物的特征;引入基于动态非单调聚焦机制的WIoU优化损失函数,提高小抛洒物学习能力,加速网络收敛。实验结果表明,所提方法在自制的高速公路抛洒物数据集上的精确率、召回率、AP0.5和AP0.5:0.95分别达到96.5%、81.6%、88.1%和46.5%,优于当前主流的目标检测方法,其算法复杂度也更低,满足实际场景应用需要。 展开更多
关键词 抛洒物检测 上下文信息 空间金字塔池化 注意力机制 损失函数
在线阅读 下载PDF
基于双分支交互的实时语义分割算法 被引量:1
3
作者 杨迪 陈春雨 《应用科技》 CAS 2024年第2期48-55,共8页
针对双分支实时语义分割算法存在双分支交互差、多尺度上下文信息提取不完善等问题,提出了基于双分支交互的实时语义分割网络(dual-branch interactive multi-scale fusion network for real-time semantic segmentation,DIMFNet)。算... 针对双分支实时语义分割算法存在双分支交互差、多尺度上下文信息提取不完善等问题,提出了基于双分支交互的实时语义分割网络(dual-branch interactive multi-scale fusion network for real-time semantic segmentation,DIMFNet)。算法以引导聚合双边语义分割网络(bilateral network with guided aggregation for real-time semantic segmentation,BiseNetV2)的双分支结构为基准进行改进,空间分支提取空间细节特征,上下文分支提取深层上下文特征。结合注意力思想提出注意力引导高级语义融合模块(attention guide high-level semantics fusion module,AGHSM)实现双分支的交互融合,以获得更好的空间特征表示;对金字塔池化模块进行改进,提出采用多层聚合金字塔池化模块(multi-layer aggregation pyramid pooling module,MAPPM)提取多尺度上下文特征,以获得更好的上下文特征表示。算法在Cityscapes数据集上进行消融实验并与现有实时语义分割网络进行对比,验证了各模块的有效性,以124.5 f/s达到了77.9%的平均交并比(mean intersection over union,MIoU);在CamVid数据集上以211.1 f/s达到了75.1%的MIoU。相比现有的实时语义分割网络,本文算法更好地权衡了分割的精度和速度。 展开更多
关键词 实时语义分割 空间分支 上下文分支 特征融合 注意力机制 多尺度特征提取 池化金字塔 深度监督
在线阅读 下载PDF
采用上下文金字塔特征的场景分类 被引量:14
4
作者 江悦 王润生 王程 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第8期1366-1373,共8页
为了能有效地表述场景图像的语义特性,提出一种基于图像块上下文信息的场景图像分类框架.首先用规则网格将图像分块,并提取每个块的SIFT特征;然后用K均值算法对训练图像的块特征聚类,形成块类型的码本;再根据此码本对图像块进行量化,得... 为了能有效地表述场景图像的语义特性,提出一种基于图像块上下文信息的场景图像分类框架.首先用规则网格将图像分块,并提取每个块的SIFT特征;然后用K均值算法对训练图像的块特征聚类,形成块类型的码本;再根据此码本对图像块进行量化,得到图像的视觉词汇表示,形成视觉词汇图,并在其上建立2类视觉词汇模型:相邻共现的不同视觉词汇对模型和连续共现的相同视觉词汇群模型;最后应用空间金字塔匹配建立视觉词汇的上下文金字塔特征,并采用SVM分类器进行分类.实验结果证明,在常用的场景图像库上,文中方法比已有的典型方法具有更好的场景分类性能. 展开更多
关键词 场景分类 上下文信息 空间金字塔匹配 图像块
在线阅读 下载PDF
整合局部特征和滤波器特征的空间金字塔匹配模型 被引量:9
5
作者 高常鑫 桑农 《电子学报》 EI CAS CSCD 北大核心 2011年第9期2034-2038,共5页
本文提出一种场景分类方法,通过整合局部特征和滤波器特征获得丰富的表征信息,并利用空间金字塔匹配模型提取空间上下文信息.该方法有如下四个特点:(1)通过转换将滤波器很好地嵌入空间金字塔匹配模型中;(2)在滤波器特征转换的过程中,采... 本文提出一种场景分类方法,通过整合局部特征和滤波器特征获得丰富的表征信息,并利用空间金字塔匹配模型提取空间上下文信息.该方法有如下四个特点:(1)通过转换将滤波器很好地嵌入空间金字塔匹配模型中;(2)在滤波器特征转换的过程中,采用降采样和平均操作,在空间密度和空间范围两者之间取得了很好的折衷;(3)将滤波器特征和局部特征组合起来,获得了更强的描述能力;(4)捕获了像素域和调制域的互补信息.同时,在三个数据库上的实验证明了该方法的有效性. 展开更多
关键词 基于上下文的表征 空间金字塔匹配 像素域 调制域 场景分类
在线阅读 下载PDF
多方向上下文特征结合空间金字塔模型的场景分类 被引量:5
6
作者 胡正平 涂潇蕾 《信号处理》 CSCD 北大核心 2011年第10期1536-1542,共7页
针对场景分类问题中,传统的"词包"模型不包含图像的上下文信息,且没有考虑图像特征间的类别差异问题,本文提出一种多方向上下文特征结合空间金字塔模型的场景分类方法。该方法首先对图像进行均匀网格分块并提取尺度不变(SIFT... 针对场景分类问题中,传统的"词包"模型不包含图像的上下文信息,且没有考虑图像特征间的类别差异问题,本文提出一种多方向上下文特征结合空间金字塔模型的场景分类方法。该方法首先对图像进行均匀网格分块并提取尺度不变(SIFT)特征,对每个局部图像块分别结合其周围三个方向的空间相邻区域,形成三种上下文特征;然后,将每类训练图像的上下文特征分别聚类形成视觉词汇,再将其连接形成最终的视觉词汇表,得到图像的视觉词汇直方图;最后,结合空间金字塔匹配算法形成金字塔直方图,并采用SVM分类器来进行分类。该方法将图像块在特征域的相似性同空间域的上下文关系有机地结合起来并加以类别区分,从而形成了具有更好区分力的视觉词汇表。在通用场景图像库上的实验表明,相比传统方法具有更好的分类性能。 展开更多
关键词 场景分类 局部邻域上下文 具体类视觉词汇 空间金字塔匹配
在线阅读 下载PDF
复杂监控背景下基于边缘感知学习网络的行为识别算法 被引量:1
7
作者 聂玮 曹悦 +2 位作者 朱冬雪 朱艺璇 黄林毅 《计算机应用与软件》 北大核心 2020年第8期227-232,共6页
由于复杂背景、多视角变化等因素的影响,准确识别、分析现实场景中人体的行为仍然是一个具有挑战性的问题。为了提升行人检测与行为识别的精度,提出一种新颖的边缘感知深度网络。通过边缘感知融合模块提升行人轮廓精度,利用多尺度金字... 由于复杂背景、多视角变化等因素的影响,准确识别、分析现实场景中人体的行为仍然是一个具有挑战性的问题。为了提升行人检测与行为识别的精度,提出一种新颖的边缘感知深度网络。通过边缘感知融合模块提升行人轮廓精度,利用多尺度金字塔池化层捕获视频序列的空时特征。边缘相关特征的互补特征能够有效地保留行人目标的清晰边界,而辅助旁侧输出与金字塔池化层输出的组合可以提取丰富的全局空时上下文信息。大量定性定量的实验结果表明,该模型可以有效地提高现有行人检测与行为识别网络的性能,在UCF101数据集上取得了90.55%的行人行为识别准确率。 展开更多
关键词 行为识别 边缘感知 深度学习 金字塔池化 空时上下文
在线阅读 下载PDF
基于上下文信息的遥感图像目标检测 被引量:3
8
作者 梁礼明 李仁杰 +1 位作者 董信 朱晨锟 《电光与控制》 CSCD 北大核心 2023年第10期89-94,共6页
针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感... 针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感知范围,获取更多的上下文信息,提升模型对小尺度目标的检测能力;其次,在特征主干网络中引入坐标注意力(CA)模块,加强模型对浅层网络中目标位置信息的识别能力;最后,将空间金字塔池化模块替换为空洞空间卷积金字塔(ASPP)模块,实现全局信息和局部信息相融合,进一步增强小目标的语义信息。实验结果表明,在RSOD数据集上,改进后算法的mAP_(50)为97.9%,相比原YOLOv5s算法提高了1.7个百分点;FPS达到71帧/s,满足实时性检测的要求。相比其他检测算法,改进后算法具有更低的漏检率和误检率,检测性能更加优秀。 展开更多
关键词 遥感图像 上下文模块 坐标注意力模块 空洞空间卷积金字塔模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部