Conversion-type anode materials are highly desirable for Na-ion batteries(NIBs)due to their high theoretical capacity.Nevertheless,the active materials undergo severe expansion and pulverization during the sodiation,r...Conversion-type anode materials are highly desirable for Na-ion batteries(NIBs)due to their high theoretical capacity.Nevertheless,the active materials undergo severe expansion and pulverization during the sodiation,resulting in inferior cycling stability.Herein,a self-supporting three-dimensional(3D)graphene sponge decorated with Fe_(2)O_(3)nanocubes(rGO@Fe_(2)O_(3))is constructed.Specifically,the 3D graphene sponge with resilience and high porosity benefits to accommodate the volume expansion of the Fe_(2)O_(3)nanocubes and facilitates the rapid electrons/ions transport,enabling spatial confinement to achieve outstanding results.Besides,the free-standing rGO@Fe_(2)O_(3)can be directly used as an electrode without additional binders and conductive additives,which helps to obtain a higher energy density.Based on the total mass of the rGO@Fe_(2)O_(3)material,the rGO@Fe_(2)O_(3)anode presents a specific capacity of 859 mAh/g at 0.1 A/g.It also delivers an impressive cycling performance(327 mAh/g after 2000 cycles at 1 A/g)and a superior rate capacity(162mAh/g at 20 A/g).The coin-type Na_(3)V_(2)(PO_(4))_(3)@C//rGO@Fe_(2)O_(3)NIB exhibits an energy density of 265.3Wh/kg.This unique 3D ionic/electronic conductive network may provide new strategies to design advanced conversion-type anode materials for high-performance NIBs.展开更多
We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination unif...We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF.展开更多
The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific...The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability.展开更多
Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide g...Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.展开更多
Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f...Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.展开更多
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re...Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.展开更多
Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to...Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.展开更多
In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confineme...In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.展开更多
Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition,optical emission spectro...Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition,optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface. In order to obtain the optimized spectral intensity, the distance must be considered. In this work, spatially confined laser-induced silicon plasma by using a Nd:YAG nanosecond laser at different distances between lens and sample surface was investigated.The laser energies were 12 mJ, 16 mJ, 20 mJ, and 24 mJ. All experiments were carried out in an atmospheric environment. The results indicated that the intensity of Si(I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance. Moreover, the spectral peak intensity with spatial confinement was higher than that without spatial confinement. The enhancement ratio was approximately 2 when laser energy was 24 mJ.展开更多
Suzuki coupling reactions between symmetrical monomers were conducted in various mesoporous silica nanoreactors grafted with palladium catalysts,enabling the selective formation of[12]cycloparaphenylene precursor with...Suzuki coupling reactions between symmetrical monomers were conducted in various mesoporous silica nanoreactors grafted with palladium catalysts,enabling the selective formation of[12]cycloparaphenylene precursor with separate yield up to 25%in one-pot reactions,much higher than that in homogeneous reaction.The spatial nanoconfinement of the nanoreactors promotes the macrocyclization while limits the concomitant linear oligomer formation,offering more possibilities for the synthesis of macrocycles from symmetrical monomers in one-pot reaction.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
In this paper,CeO_(2) substrate was prepared by the sol-gel method,further CuO was introduced by adding the copper complexes with chelating agents into the sol-gel precursors of CeO_(2),in which different chelating ag...In this paper,CeO_(2) substrate was prepared by the sol-gel method,further CuO was introduced by adding the copper complexes with chelating agents into the sol-gel precursors of CeO_(2),in which different chelating agents(β-cyclodextrin,glucose and trimesic acid)were tried.This synthesis method helps the CuO species to disperse very uniformly in the CeO_(2) substrates.When the amount of copper oxide is up to33 mol%,the CuO/CeO_(2) samples can still maintain a highly dispersed state.The CeO_(2) and CuO/CeO_(2)samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature-programmed reduction of hydrogen(H_(2)-TPR),temperature-programed desorption(O_(2)-TPD),etc.It is found that the CuO/CeO_(2) catalyst prepared byβ-cyclodextrin(βCuO/CeO_(2)) exhibits better catalytic performance owing to the higher dispersion,higher specific surface area,more defects,more active Ce3+and Cu^(+) ions,more oxygen vacancies,more surface active oxygen,relatively better low temperature reducibility,and the exposed(110) active facets.In the condition of 1000×10-6toluene in air and WHSV=60000 mL/(g·h),the T90for toluene conversion is 227℃.The reaction mechanism of toluene catalytic oxidation over CeO_(2)andβCuO/CeO_(2) is discussed by the study of in-situ DRIFTS.This work affords a simple and efficient method for the synthesis of highly dispersed bimetal oxide catalysts with high contents.展开更多
Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,w...Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,which determines the outcome of tissue repair.The immune responses are complex process involving numerous immune cells and can be divide into innate immune and adaptive immune responses.Once materials are implanted,innate immune responses are activated under the mediation of several immune cells(e.g.neutrophils and macrophages),meanwhile immature dendritic cells(imDCs)are recruited to the implant sites to recognize,internalize and process antigens.Upon antigen uptake,imDCs gradually differentiate into mature dendritic cells(mDCs)and migrate to secondary lymph nodes.In the lymph nodes,mDCs present processed antigen peptides to naive T lymphocytes and activate their antigen specific proliferation,resulting in initiation of adaptive immune responses.Due to their key position in the immune system,serving to bridge innate and adaptive immunity,DCs are crucial to guiding and modulating the immune responses caused by implanted materials.Therefore,figuring out the response of DCs to implanted materials and the exact role of DCs in tissue healing processes will provide deeper insight for the rational design of biomaterials.Previous studies on the effects of implants on immune functions of DCs are mainly focused on physical and chemical properties of the materials(e.g.released chemical composition,surface chemistry,substrate stiffness and surface topography).All these factors will change the microenvironment of the tissue around implant materials,which affect the immune functions of DCs.However,the change of microenvironment not only directly derives from the physical and chemical properties of the material(intrinsic),but also indirectly results from the remodeled extracellular matrix(ECM)caused by implanted materials.When blood or tissue fluid contact with materials after implantation,proteins(e.g.fibrin and collagen)will absorb and deposit on the surface of implants,leading to a provisionally stable matrix with microporous fibrous-liked network structure.It means that the remodeled ECM can provide adhesion sites for recruited DCs and form spatial confinement.DCs,as a kind of cells that are extremely sensitive to mechanical stimuli,theoretically,can response to the mechanical stimuli coming from spatial confinement of remodeled ECM,which may lead to a series of modulations in their cell morphologies and immune functions.Then,the remodeled ECM is a non-negligible mechanical cue.However,to the best of our knowledge,there is a lack of a simple and effective model to establish the relationship between the immune functions of DCs and remodeled ECM.Most studies on the responses of DCs to implanted materials are still based on suspension culture model,which is the normal status of DCs in vitro culture systems.In addition,the processes by which DC exerts immune functions(both endocytosis and antigen presentation)are dynamically physical interaction.It means that the changes of DCs’immune functions are highly correlated with the changes of their biomechanical characteristics caused by remodeled ECM.In this work,we have found that the ECM was remodeled by a large amount of fibrin matrix deposited on the surface of implants in the early stage of the inflammations following implantation.Thus,we used non-toxic salmon fibrin hydrogels with microporous fibrous-liked network structure to mimic the deposited fibrin matrix.Then,human monocyte-derived DCs were cultured on the surface and inside of the fibrin hydrogels to mimic the different spatial confinement states of fibrin matrix.Our results indicated that cell morphologies and cytoskeleton structures of DCs were regulated by the spatial confinement of fibrin hydrogels,resulting in generating mechanical stimuli for DCs.Furthermore,we have found that the biomechanical characteristics and the immune functions of both imDCs and mDC were also modulated.Considering the changes in surface markers,secreted cytokines and biomechanical characteristics of DCs,it indicates that the tendency and magnitude of modulations were highly associated with the spatial confinement of fibrin hydrogels.This model demonstrated that mechanical stimuli deriving from spatial confinement of deposited fibrin matrix is an important factor for regulating the biomechanical characteristics and immune functions of DCs.展开更多
Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analy...Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
基金supported by National Natural Science Foundation of China(Nos.52307239,52102300,52207234)the Natural Science Foundation of Hubei Province(Nos.2022CFB1003,2021CFA025).
文摘Conversion-type anode materials are highly desirable for Na-ion batteries(NIBs)due to their high theoretical capacity.Nevertheless,the active materials undergo severe expansion and pulverization during the sodiation,resulting in inferior cycling stability.Herein,a self-supporting three-dimensional(3D)graphene sponge decorated with Fe_(2)O_(3)nanocubes(rGO@Fe_(2)O_(3))is constructed.Specifically,the 3D graphene sponge with resilience and high porosity benefits to accommodate the volume expansion of the Fe_(2)O_(3)nanocubes and facilitates the rapid electrons/ions transport,enabling spatial confinement to achieve outstanding results.Besides,the free-standing rGO@Fe_(2)O_(3)can be directly used as an electrode without additional binders and conductive additives,which helps to obtain a higher energy density.Based on the total mass of the rGO@Fe_(2)O_(3)material,the rGO@Fe_(2)O_(3)anode presents a specific capacity of 859 mAh/g at 0.1 A/g.It also delivers an impressive cycling performance(327 mAh/g after 2000 cycles at 1 A/g)and a superior rate capacity(162mAh/g at 20 A/g).The coin-type Na_(3)V_(2)(PO_(4))_(3)@C//rGO@Fe_(2)O_(3)NIB exhibits an energy density of 265.3Wh/kg.This unique 3D ionic/electronic conductive network may provide new strategies to design advanced conversion-type anode materials for high-performance NIBs.
基金supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF.
基金the National Natural Science Foundation of China(Nos.52122312,22209024,and 52473294)Tongcheng R&D Foundation(No.CPCIF-RA-0102)the State Key Laboratory of Advanced Fiber Materials,Donghua University.
文摘The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ08 and 2023HWYQ-028)+4 种基金the Taishan Scholar Project Foundation of Shandong Province(Nos.tsqn202211028 and tsqn202306080)the City University of Hong Kong(Nos.9020005,9610663,and 7020103)ITF-RTH-Global STEM Professorship(No.9446008)Hong Kong Branch of National Precious Metals Material Engineering Research Center—ITC FundGeneral Research Fund(No.9043720)from the Research Grants Council of Hong Kong SAR,China.
文摘Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金National Natural Science Foundation of China,No.42301470,No.52270185,No.42171389Capacity Building Program of Local Colleges and Universities in Shanghai,No.21010503300。
文摘Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.
基金National Key Research and Development Program of China,No.2023YFC3206605,No.2021YFC3201102National Natural Science Foundation of China,No.41971035。
文摘Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.
文摘Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.
基金the support from the Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter(Grant No.SKLLIM 1502)the National Natural Science Foundation of China(Grant Nos.11674128,11474129 and 11504129)the China Postdoctoral Science Foundation(Grant No.2014M551169)
文摘In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.
基金support by National Natural Science Foundation of China(Grant Nos.11674128,11504129,and11474129)Jilin Province Scientific and Technological Development Program,China(Grant No.20170101063JC)the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province,China(2016,No.400)
文摘Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition,optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface. In order to obtain the optimized spectral intensity, the distance must be considered. In this work, spatially confined laser-induced silicon plasma by using a Nd:YAG nanosecond laser at different distances between lens and sample surface was investigated.The laser energies were 12 mJ, 16 mJ, 20 mJ, and 24 mJ. All experiments were carried out in an atmospheric environment. The results indicated that the intensity of Si(I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance. Moreover, the spectral peak intensity with spatial confinement was higher than that without spatial confinement. The enhancement ratio was approximately 2 when laser energy was 24 mJ.
基金the financial support from the National Natural Science Foundation of China(Nos.22171083,21674035)the Fundamental Research Funds for the Central Universities(No.22221818014)+1 种基金the Shanghai Leading Academic Discipline Project(No.B502)the“Eastern Scholar Professorship”support from the Shanghai local government。
文摘Suzuki coupling reactions between symmetrical monomers were conducted in various mesoporous silica nanoreactors grafted with palladium catalysts,enabling the selective formation of[12]cycloparaphenylene precursor with separate yield up to 25%in one-pot reactions,much higher than that in homogeneous reaction.The spatial nanoconfinement of the nanoreactors promotes the macrocyclization while limits the concomitant linear oligomer formation,offering more possibilities for the synthesis of macrocycles from symmetrical monomers in one-pot reaction.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金Project supported by the National Key Research and Development Program of China(2022YFB3504200)the National Natural Science Foundation of China(21501175,2217060219)+1 种基金the Natural Science Foundation of Fujian Province(2022Y0071)the Xiamen Science and Technology Program Project(3502Z20172029,3502Z20203085).
文摘In this paper,CeO_(2) substrate was prepared by the sol-gel method,further CuO was introduced by adding the copper complexes with chelating agents into the sol-gel precursors of CeO_(2),in which different chelating agents(β-cyclodextrin,glucose and trimesic acid)were tried.This synthesis method helps the CuO species to disperse very uniformly in the CeO_(2) substrates.When the amount of copper oxide is up to33 mol%,the CuO/CeO_(2) samples can still maintain a highly dispersed state.The CeO_(2) and CuO/CeO_(2)samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature-programmed reduction of hydrogen(H_(2)-TPR),temperature-programed desorption(O_(2)-TPD),etc.It is found that the CuO/CeO_(2) catalyst prepared byβ-cyclodextrin(βCuO/CeO_(2)) exhibits better catalytic performance owing to the higher dispersion,higher specific surface area,more defects,more active Ce3+and Cu^(+) ions,more oxygen vacancies,more surface active oxygen,relatively better low temperature reducibility,and the exposed(110) active facets.In the condition of 1000×10-6toluene in air and WHSV=60000 mL/(g·h),the T90for toluene conversion is 227℃.The reaction mechanism of toluene catalytic oxidation over CeO_(2)andβCuO/CeO_(2) is discussed by the study of in-situ DRIFTS.This work affords a simple and efficient method for the synthesis of highly dispersed bimetal oxide catalysts with high contents.
基金funded by grants from the National Natural Science Foundation of China ( 31771014, 11762006,31660258,31860262,11762006,81460254 )the 2011 Collaborative Innovation Program of Guizhou Province ( 2015-04)+1 种基金the Science and Technology Innovative Talent Team of Guizhou Province ( 2015-4021)the Science and Technology Foundation of Guizhou Province ( 2018-1412,2016-5676,2017-5718)
文摘Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,which determines the outcome of tissue repair.The immune responses are complex process involving numerous immune cells and can be divide into innate immune and adaptive immune responses.Once materials are implanted,innate immune responses are activated under the mediation of several immune cells(e.g.neutrophils and macrophages),meanwhile immature dendritic cells(imDCs)are recruited to the implant sites to recognize,internalize and process antigens.Upon antigen uptake,imDCs gradually differentiate into mature dendritic cells(mDCs)and migrate to secondary lymph nodes.In the lymph nodes,mDCs present processed antigen peptides to naive T lymphocytes and activate their antigen specific proliferation,resulting in initiation of adaptive immune responses.Due to their key position in the immune system,serving to bridge innate and adaptive immunity,DCs are crucial to guiding and modulating the immune responses caused by implanted materials.Therefore,figuring out the response of DCs to implanted materials and the exact role of DCs in tissue healing processes will provide deeper insight for the rational design of biomaterials.Previous studies on the effects of implants on immune functions of DCs are mainly focused on physical and chemical properties of the materials(e.g.released chemical composition,surface chemistry,substrate stiffness and surface topography).All these factors will change the microenvironment of the tissue around implant materials,which affect the immune functions of DCs.However,the change of microenvironment not only directly derives from the physical and chemical properties of the material(intrinsic),but also indirectly results from the remodeled extracellular matrix(ECM)caused by implanted materials.When blood or tissue fluid contact with materials after implantation,proteins(e.g.fibrin and collagen)will absorb and deposit on the surface of implants,leading to a provisionally stable matrix with microporous fibrous-liked network structure.It means that the remodeled ECM can provide adhesion sites for recruited DCs and form spatial confinement.DCs,as a kind of cells that are extremely sensitive to mechanical stimuli,theoretically,can response to the mechanical stimuli coming from spatial confinement of remodeled ECM,which may lead to a series of modulations in their cell morphologies and immune functions.Then,the remodeled ECM is a non-negligible mechanical cue.However,to the best of our knowledge,there is a lack of a simple and effective model to establish the relationship between the immune functions of DCs and remodeled ECM.Most studies on the responses of DCs to implanted materials are still based on suspension culture model,which is the normal status of DCs in vitro culture systems.In addition,the processes by which DC exerts immune functions(both endocytosis and antigen presentation)are dynamically physical interaction.It means that the changes of DCs’immune functions are highly correlated with the changes of their biomechanical characteristics caused by remodeled ECM.In this work,we have found that the ECM was remodeled by a large amount of fibrin matrix deposited on the surface of implants in the early stage of the inflammations following implantation.Thus,we used non-toxic salmon fibrin hydrogels with microporous fibrous-liked network structure to mimic the deposited fibrin matrix.Then,human monocyte-derived DCs were cultured on the surface and inside of the fibrin hydrogels to mimic the different spatial confinement states of fibrin matrix.Our results indicated that cell morphologies and cytoskeleton structures of DCs were regulated by the spatial confinement of fibrin hydrogels,resulting in generating mechanical stimuli for DCs.Furthermore,we have found that the biomechanical characteristics and the immune functions of both imDCs and mDC were also modulated.Considering the changes in surface markers,secreted cytokines and biomechanical characteristics of DCs,it indicates that the tendency and magnitude of modulations were highly associated with the spatial confinement of fibrin hydrogels.This model demonstrated that mechanical stimuli deriving from spatial confinement of deposited fibrin matrix is an important factor for regulating the biomechanical characteristics and immune functions of DCs.
基金Under the auspices of National Natural Science Foundation of China(No.42371192)Natural Science Foundation of Hunan Province(No.2023JJ30100)Social Science Foundation of Hunan Province(No.23ZDAJ023,23YBA133)。
文摘Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.