Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrati...Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.展开更多
Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network wit...Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.展开更多
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bif...Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and paramet...Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.展开更多
The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises d...The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises distribution. With the explicit expression for the directional density function, the spatial coherence functions of shipping noise are also derived, and the relative features are studied. The research result shows that the properties of shipping noise are different from the ambient noise of other sources, and it can be used for the sonar array design. The model is well matched with the experimental result, and it can be extended to the situations when the ambient noise exhibits the dual-horned structure.展开更多
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
.Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific co....Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions,thus hindering their generalization across multiple scenes.One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models.We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method,termed train-with-coherence-swin(TWC-Swin)transformer,which uses spatial coherence(SC)as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene.The light-processing system(LPR)we designed enables manipulation of SC and simulation of any turbulence.Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences,which suggests its robustness,powerful generalization capabilities,and adaptability to unknown environments.Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes,which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial,marine,and aerial domains.展开更多
Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. Th...Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories;however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.展开更多
In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula...In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.展开更多
It is commonly assumed that nonlinear frequency conversion requires lasers with high coherence;however,this assumption has constrained our broader understanding of coherence and overlooked the potential role of incohe...It is commonly assumed that nonlinear frequency conversion requires lasers with high coherence;however,this assumption has constrained our broader understanding of coherence and overlooked the potential role of incoherence in nonlinear interactions.In this work,we study the synthesis of optical spatial coherence in second harmonic generation using quadratic nonlinear photonic crystals.We demonstrate a method where the second harmonic coherence is customized by employing quantitative phase retrieval and a complex square-root filter sequentially on fundamental frequency speckles.As a proof-of-concept,we experimentally show incoherent imaging of a smiley face transitioning from infrared to visible light.Moreover,we apply this method to produce two representative types of structured light beams in second harmonic generation:incoherent vortex and Airy beams.During the nonlinear synthesis of incoherent vortex beams,we have,for the first time,experimentally verified the conservation of orbital angular momentum in the nonlinear frequency conversion process of a low-coherence source.Furthermore,the generated second-harmonic incoherent Airy beam preserves the self-acceleration characteristics of its fundamental frequency counterpart,remaining unaffected by reductions in coherence.Our results not only deepen the fundamental understanding of optical coherence but also unlock exciting possibilities for applications in infrared imaging and fluorescence microscopy where optical nonlinear interactions play an important role.展开更多
Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is prop...Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.展开更多
Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach t...Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.展开更多
We propose a novel optical method for glucose measurement based on difuse photon-pair density wave(DPPDW)in a multiple scattering medium(MSM)where the light scattering of photon-pair is induced by refractive index mis...We propose a novel optical method for glucose measurement based on difuse photon-pair density wave(DPPDW)in a multiple scattering medium(MSM)where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution.Experi-mentally,the DPPDW propagates in MSM via a two frequency laser(TFL)beam wherein highly correlated pairs of linear polarized photons are generated.The reduced scattering coefficientμ2s and absorption coefficientμ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different dis-tances between the source and detection fibers in MSM.The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient(δμ′2)is 0.049%mM^(-1)in a 1%intralipid solution.In addition,the linear range ofδμ′2s vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.展开更多
Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities.In this work,we introduce a novel protocol for multi-channe...Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities.In this work,we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam.By characterizing the beam’s spatial coherence structure with a 2×2 coherence matrix,we demonstrate independent control over the three components of the coherence Stokes vector.This allows for three-channel optical information encoding and encryption,with applications in color image representation.Unlike existing methods based on fully coherent light modulations,our approach utilizes a two-point dependent coherence Stokes vector,proving resilient to random noise in experimental scenarios.Our findings provide a robust foundation for higher-dimensional optical encoding and encryption,addressing limitations associated with partially coherent light in complex environments.展开更多
Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism o...Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.展开更多
The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=...The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.展开更多
Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveal...Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.展开更多
In general relativity,a gravitational“white hole”is a hypothetical region of space that cannot be entered from outside.It is the reverse of a“black hole”from which light and information cannot escape.We report an ...In general relativity,a gravitational“white hole”is a hypothetical region of space that cannot be entered from outside.It is the reverse of a“black hole”from which light and information cannot escape.We report an optical device exhibiting intriguing similarities to these objects.It will either totally absorb(optical black hole)or totally reject(optical white hole)light of any wavelength,depending on its polarization.The device’s functionality is based on the formation of a standing wave from the wavefront of spatially coherent incident radiation.Interaction of the standing wave with a thin absorber enables coherent perfect absorption and transmission,whereas polarization sensitivity arises from the geometrical phase of the interfering beams.We provide experimental proof-of-principle demonstrations and show that the device operates as a black and white hole for orthogonal polarizations of the incident light.From a remote point,it will look similar to a gravitational black or white hole depending on the polarization of light.In principle,the optical black and white hole device can operate as a deterministic absorber or rejector throughout the entire electromagnetic spectrum.Broadband absorbers and rejectors can be useful for energy harvesting,detection,stealth technologies,and redistribution of light.展开更多
We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates,intricately interconnected and energized through nonresonant optical pumping.The network employs a binary fram...We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates,intricately interconnected and energized through nonresonant optical pumping.The network employs a binary framework,where each neuron,facilitated by the spatial coherence of pairwise coupled condensates,performs binary operations.This coherence,emerging from the ballistic propagation of polaritons,ensures efficient,network-wide communication.The binary neuron switching mechanism,driven by the nonlinear repulsion through the excitonic component of polaritons,offers computational efficiency and scalability advantages over continuous weight neural networks.Our network enables parallel processing,enhancing computational speed compared to sequential or pulse-coded binary systems.The system's performance was evaluated using diverse datasets,including the MNiST dataset for image recognition and the Speech Commands dataset for voice recognition tasks.In both scenarios,the proposed system demonstrates the potential to outperform existing polaritonic neuromorphic systems.For image recognition,this is evidenced by an impressive predicted classification accuracy of up to 97.5%.In voice recognition,the system achieved a classification accuracy of about 68%for the ten-class subset,surpassing the performance of conventional benchmark,the Hidden Markov Model with Gaussian Mixture Model.展开更多
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2024QYBS031)Fundamental Research Funds for the Central Universities(Grant No.2022JBQY007)。
文摘Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.
基金Supported by National Natural Science Foundation of China under Grant Nos.11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No.GK200902025
文摘Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.
基金Supported by National Natural Science Foundation of China under Grant Nos. 11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No. GK200902025
文摘Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872014)
文摘Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.
文摘The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises distribution. With the explicit expression for the directional density function, the spatial coherence functions of shipping noise are also derived, and the relative features are studied. The research result shows that the properties of shipping noise are different from the ambient noise of other sources, and it can be used for the sonar array design. The model is well matched with the experimental result, and it can be extended to the situations when the ambient noise exhibits the dual-horned structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
基金supported by the National Natural Science Foundation of China(Grants Nos.12174338 and 11874321)
文摘.Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments.The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions,thus hindering their generalization across multiple scenes.One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models.We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method,termed train-with-coherence-swin(TWC-Swin)transformer,which uses spatial coherence(SC)as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene.The light-processing system(LPR)we designed enables manipulation of SC and simulation of any turbulence.Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences,which suggests its robustness,powerful generalization capabilities,and adaptability to unknown environments.Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes,which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial,marine,and aerial domains.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174249 and 61475139)the National High-Technology Research and Development Program of China(Grant No.2011AA060504)the National Key Basic Research Program of China(Grant No.2013CB329501)
文摘Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories;however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11504286)the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-470)+1 种基金the Fund from the International Technology Collaborative Center for Advanced Optical Manufacturing and Optoelectronic Measurementthe Science Fund from the Shaanxi Provincial Key Laboratory of Photoelectric Measurement and Instrument Technology.
文摘In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
基金support provided by Israel Science Foundation,grants 969/22 and 3117/23.
文摘It is commonly assumed that nonlinear frequency conversion requires lasers with high coherence;however,this assumption has constrained our broader understanding of coherence and overlooked the potential role of incoherence in nonlinear interactions.In this work,we study the synthesis of optical spatial coherence in second harmonic generation using quadratic nonlinear photonic crystals.We demonstrate a method where the second harmonic coherence is customized by employing quantitative phase retrieval and a complex square-root filter sequentially on fundamental frequency speckles.As a proof-of-concept,we experimentally show incoherent imaging of a smiley face transitioning from infrared to visible light.Moreover,we apply this method to produce two representative types of structured light beams in second harmonic generation:incoherent vortex and Airy beams.During the nonlinear synthesis of incoherent vortex beams,we have,for the first time,experimentally verified the conservation of orbital angular momentum in the nonlinear frequency conversion process of a low-coherence source.Furthermore,the generated second-harmonic incoherent Airy beam preserves the self-acceleration characteristics of its fundamental frequency counterpart,remaining unaffected by reductions in coherence.Our results not only deepen the fundamental understanding of optical coherence but also unlock exciting possibilities for applications in infrared imaging and fluorescence microscopy where optical nonlinear interactions play an important role.
基金supported by NSFC Joint Fund with Guangdong under Key Project(U1201258)National Natural Science foundation of China(61402261+3 种基金6130308861572286)the scientific research foundation of Shandong Province of Outstanding Young Scientist Award(BS2013DX048)Shandong Ji’nan Science and Technology Development Project(201202015)
文摘Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.
基金supported by Fund of National Science & Technology monumental projects under Grants No.61105015,NO.61401239,NO.2012-364-641-209
文摘Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.
文摘We propose a novel optical method for glucose measurement based on difuse photon-pair density wave(DPPDW)in a multiple scattering medium(MSM)where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution.Experi-mentally,the DPPDW propagates in MSM via a two frequency laser(TFL)beam wherein highly correlated pairs of linear polarized photons are generated.The reduced scattering coefficientμ2s and absorption coefficientμ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different dis-tances between the source and detection fibers in MSM.The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient(δμ′2)is 0.049%mM^(-1)in a 1%intralipid solution.In addition,the linear range ofδμ′2s vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.
基金National Key Research and Development Program of China(2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China(11974218,12192254,12274310,12274311,92250304,12347114)Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB185).
文摘Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities.In this work,we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam.By characterizing the beam’s spatial coherence structure with a 2×2 coherence matrix,we demonstrate independent control over the three components of the coherence Stokes vector.This allows for three-channel optical information encoding and encryption,with applications in color image representation.Unlike existing methods based on fully coherent light modulations,our approach utilizes a two-point dependent coherence Stokes vector,proving resilient to random noise in experimental scenarios.Our findings provide a robust foundation for higher-dimensional optical encoding and encryption,addressing limitations associated with partially coherent light in complex environments.
基金supported by the National Natural Science Foundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2012 opening subjects of The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
文摘Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.
基金supported by the National Natural Science Foundation of China(No.61108086)the Natural Science Foundation of Chongqing(Nos.2011BB5066 and 2012jj A0612)+3 种基金the Chongqing City Science and Technology Plan(No.cstc2012gg-yyjs0572)the Fundamental Research Funds for the Central Universities(Nos.CDJZR10160003 and CDJZR13160008)the China Postdoctoral Science Foundationthe Chongqing Postdoctoral Science Special Foundation of China
文摘The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.
文摘Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.
基金supported by the Zepler Institute Stimulus Fund,UK’s Engineering and Physical Sciences Research Council(Grant Nos.EP/M009122/1 and EP/T02643X/1)the Singapore National Research Foundation(Grant No.NRF2021-QEP2-01-P01).
文摘In general relativity,a gravitational“white hole”is a hypothetical region of space that cannot be entered from outside.It is the reverse of a“black hole”from which light and information cannot escape.We report an optical device exhibiting intriguing similarities to these objects.It will either totally absorb(optical black hole)or totally reject(optical white hole)light of any wavelength,depending on its polarization.The device’s functionality is based on the formation of a standing wave from the wavefront of spatially coherent incident radiation.Interaction of the standing wave with a thin absorber enables coherent perfect absorption and transmission,whereas polarization sensitivity arises from the geometrical phase of the interfering beams.We provide experimental proof-of-principle demonstrations and show that the device operates as a black and white hole for orthogonal polarizations of the incident light.From a remote point,it will look similar to a gravitational black or white hole depending on the polarization of light.In principle,the optical black and white hole device can operate as a deterministic absorber or rejector throughout the entire electromagnetic spectrum.Broadband absorbers and rejectors can be useful for energy harvesting,detection,stealth technologies,and redistribution of light.
基金support of Saint-Petersburg State University(research grant No.1024022800259-7)the state assignment in the field of scientific activity of the Ministry of Science and Higher Education of the Russian Federation(theme FZUN-2024-0019,state assignment of VISU)the Innovation Program for Quantum Science and Technology 2023ZD0300300 are acknowledged。
文摘We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates,intricately interconnected and energized through nonresonant optical pumping.The network employs a binary framework,where each neuron,facilitated by the spatial coherence of pairwise coupled condensates,performs binary operations.This coherence,emerging from the ballistic propagation of polaritons,ensures efficient,network-wide communication.The binary neuron switching mechanism,driven by the nonlinear repulsion through the excitonic component of polaritons,offers computational efficiency and scalability advantages over continuous weight neural networks.Our network enables parallel processing,enhancing computational speed compared to sequential or pulse-coded binary systems.The system's performance was evaluated using diverse datasets,including the MNiST dataset for image recognition and the Speech Commands dataset for voice recognition tasks.In both scenarios,the proposed system demonstrates the potential to outperform existing polaritonic neuromorphic systems.For image recognition,this is evidenced by an impressive predicted classification accuracy of up to 97.5%.In voice recognition,the system achieved a classification accuracy of about 68%for the ten-class subset,surpassing the performance of conventional benchmark,the Hidden Markov Model with Gaussian Mixture Model.