Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflecti...Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.展开更多
As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol...As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.展开更多
基金supported in part by Boeing Company and Nanjing University of Aeronautics and Astronautics(NUAA)through the Research on Decision Support Technology of Air Traffic Operation Management in Convective Weather under Project 2022-GT-129in part by the Postgraduate Research and Practice Innovation Program of NUAA(No.xcxjh20240709)。
文摘Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.
基金Project(2018YFE0120100)supported by the National Key R&D Program of ChinaProject(YBPY2040)supported by the Scientific Research Foundation of Graduate School of Southeast University,China。
文摘As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.