Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f...Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.展开更多
In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestri...In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.展开更多
In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses...In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.展开更多
基金supported by the National Natural Science Foundation of China(No.62103298)。
文摘Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.
基金the Foshan Science and technology Innovation Team Project(No.FS0AA-KJ919-4402-0060)the National Natural Science Foundation of China(No.62263018)。
文摘In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.
基金the Key Project of Basic Research of Yunnan Province(No.202101AS070016)。
文摘In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.