期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
基于面向对象CNN和RF的不同空间分辨率遥感影像农业大棚提取研究 被引量:8
1
作者 林欣怡 汪小钦 +3 位作者 汤紫霞 李蒙蒙 吴瑞姣 黄德华 《遥感技术与应用》 CSCD 北大核心 2024年第2期315-327,共13页
遥感技术已成为快速有效获取农业大棚覆盖信息的重要途径,但遥感影像空间分辨率大小对提取精度的影响具有双重性,选择适宜分辨率影像具有重要意义。以南方农业塑料大棚为研究对象,利用GF-1、GF-2和Sentinel-2形成1~16 m间6个不同空间分... 遥感技术已成为快速有效获取农业大棚覆盖信息的重要途径,但遥感影像空间分辨率大小对提取精度的影响具有双重性,选择适宜分辨率影像具有重要意义。以南方农业塑料大棚为研究对象,利用GF-1、GF-2和Sentinel-2形成1~16 m间6个不同空间分辨率影像数据集,基于面向对象影像分析方法(Object-Based Image Analysis,OBIA),分别利用面向对象卷积神经网络(Convolutional Neural Network,CNN)方法和随机森林(Random forest,RF)方法开展大棚提取,分析提取精度和不同方法下的差异性。结果表明:①CNN和RF方法下,农业大棚的提取精度随着影像分辨率降低总体呈下降趋势,在1~16 m的影像上均能检测到农业大棚;②相对于RF方法,CNN方法对影像空间分辨率要求更高,在1~2 m分辨率下,CNN方法有更少的漏提和误提,但在4m及更低分辨率下,RF方法的适用性更高;③2 m分辨率影像是大棚信息提取的最佳空间分辨率,可经济有效地实现大棚监测。 展开更多
关键词 农业大棚提取 面向对象cnn方法 随机森林 空间分辨率 高分辨率遥感数据
原文传递
基于SVMD-ISSA-CNN-TGLSTM的供热负荷预测模型 被引量:5
2
作者 薛贵军 牛盼 +1 位作者 谢文举 李水清 《现代电子技术》 北大核心 2024年第11期131-139,共9页
针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM... 针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM模型;其次,考虑到负荷序列的非平稳特征,采用SVMD分解,并引用改进的麻雀搜索算法来优化模型的参数,避免调参陷入局部最优;最后,将不同模型之间的预测效果与经济效益进行对比。结果表明:SVMD-ISSA-CNN-TGLSTM模型经济效益最高,评价指标RMSE、MSE、MAE相比ISSA-CNN-TGLSTM模型分别降低了35.7%、59.0%、32.7%,且均优于其他不同模型,预测效果最佳。 展开更多
关键词 供热负荷预测 逐次变分模态分解 改进的麻雀搜索算法 卷积神经网络 转换门控长短期记忆神经网络 空间提取能力
在线阅读 下载PDF
改进Mask R-CNN的无人机影像建筑物提取 被引量:2
3
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-cnn 路径融合 空洞空间金字塔池化模块
在线阅读 下载PDF
钢轨表面缺陷检测Mask R-CNN算法研究与优化 被引量:3
4
作者 孟瑞锋 梁桢 +2 位作者 贾超 乔志 赵晨 《都市快轨交通》 北大核心 2024年第5期68-77,共10页
为有效防止城市轨道交通事故发生,更好地保障运行安全,钢轨表面缺陷检测技术在巡检工作中发挥着重要作用。针对现有钢轨缺陷检测技术中检测精度差、小目标敏感度低等问题,在Mask R-CNN(mask region-based convolutional neural network... 为有效防止城市轨道交通事故发生,更好地保障运行安全,钢轨表面缺陷检测技术在巡检工作中发挥着重要作用。针对现有钢轨缺陷检测技术中检测精度差、小目标敏感度低等问题,在Mask R-CNN(mask region-based convolutional neural network)算法模型基础上,提出一种融合注意力机制的模型改进方案。该方案在特征提取网络中引入通道-空间复合注意力机制(channel-wise spatial module,CSM)用于实例分割缺陷检测,有效剔除干扰信息,获得多尺度特征表达,得到更多空间信息以及更优的浅层信息,从而提升对钢轨表面缺陷边缘检测能力。在相同的实验环境下,相对于Mask R-CNN算法,加入CSM后,Mask R-CNN模型的平均精度均值(mean average precision,mAP)提高了6.5%。其中,对钢轨“凹陷”“裂纹”以及“疲劳磨损”缺陷识别的平均精度(average precision,AP)分别提高了6.3%、6.9%和6.1%。横向对比发现,加入CSM后的Mask R-CNN模型,相较于Fast R-CNN模型,三种缺陷的分割效果分别提升了11.6%、12.5%和12.9%。同时,相较于Faster R-CNN模型,三种缺陷的分割效果分别提升了8.8%、10.0%和10.3%。加入CSM后的Mask R-CNN模型可以更好地识别三类缺陷,提升检测精度和小目标敏感度,为轨道智能巡检提供更安全有力的技术支持和保障。 展开更多
关键词 城市轨道交通 通道-空间注意力机制 钢轨缺陷 实例分割 Mask R-cnn算法
在线阅读 下载PDF
集成CNN和Transformer的通道交互多层级融合变化检测 被引量:1
5
作者 邵攀 石卫超 +3 位作者 秦道龙 张晓东 董婷 管宗胜 《测绘科学》 CSCD 北大核心 2024年第5期110-121,共12页
为有效集成卷积神经网络的局部性和Transformer的全局性,提出一种全新的通道交互多层级融合变化检测网络CIMLFNet。以CNN和Transformer为基础,设计一种三通道特征提取器,以充分提取两期影像的时空特征;构建一种金字塔时空交叉注意力模块... 为有效集成卷积神经网络的局部性和Transformer的全局性,提出一种全新的通道交互多层级融合变化检测网络CIMLFNet。以CNN和Transformer为基础,设计一种三通道特征提取器,以充分提取两期影像的时空特征;构建一种金字塔时空交叉注意力模块,利用通道2提取的特征增强通道1和3提取的特征,突出变化信息;提出一种双分支通道交互多层级融合模块,分别从层级优先和通道优先的角度对增强的特征进行融合,以充分利用CNN和Transformer的优势和互补性;给出一种简单有效的边界区域增强分类器。在WHU、Google、GVLM和LEVIR等4组公开变化检测数据上,CIMLFNet的F_(1)/IoU值分别达到91.19%/83.80%、85.97%/75.40%、88.85%/79.94%和90.07%/81.94%,明显优于6组对比方法,验证了CIMLFNet的有效性。 展开更多
关键词 遥感变化检测 cnn TRANSFORMER 通道交互多层级融合 金字塔时空交叉注意力 边界区域增强
原文传递
双维度交叉融合驱动的图像超分辨率重建方法
6
作者 贾晓芬 王子祥 +2 位作者 赵佰亭 粱镇洹 胡锐 《浙江大学学报(工学版)》 北大核心 2025年第12期2516-2526,共11页
针对现有图像超分辨率模型对图像深层语义信息中的底层特征提取不充分,导致重建图像细节丢失的问题,提出从空间、通道双维度交叉融合驱动的图像超分辨率模型.该模型利用Transformer的注意力机制,在空间维度搭建空间密集全局注意力(SIGA)... 针对现有图像超分辨率模型对图像深层语义信息中的底层特征提取不充分,导致重建图像细节丢失的问题,提出从空间、通道双维度交叉融合驱动的图像超分辨率模型.该模型利用Transformer的注意力机制,在空间维度搭建空间密集全局注意力(SIGA),捕捉深层空间区域位置关系;在通道维度搭建通道交叉注意力(CCA),捕获通道间的特征依赖性.SIGA与CCA分别并联深度可分离卷积,增强模型高层语义信息中底层特征的提取能力,并使用空间压缩策略开发交叉融合模块(CFB),保证注意力模块与卷积之间的细粒特征高效融合.级联双维度融合模块,助力深层语义信息全面交汇与聚合,实现恢复图像中的细腻结构.实验表明,在比例因子为4的Urb-an100和Manga109中,相较于最新方法BiGLFE,该模型在PSNR上分别提高了0.52、0.81dB. 展开更多
关键词 图像超分 TRANSFORMER cnn 融合 空间注意力 通道注意力
在线阅读 下载PDF
Instance Segmentation of Outdoor Sports Ground from High Spatial Resolution Remote Sensing Imagery Using the Improved Mask R-CNN
7
作者 Yijia Liu Jianhua Liu +2 位作者 Heng Pu Yuan Liu Shiran Song 《International Journal of Geosciences》 2019年第10期884-905,共22页
Aiming at the land cover (features) recognition of outdoor sports venues (football field, basketball court, tennis court and baseball field), this paper proposed a set of object recognition methods and technical flow ... Aiming at the land cover (features) recognition of outdoor sports venues (football field, basketball court, tennis court and baseball field), this paper proposed a set of object recognition methods and technical flow based on Mask R-CNN. Firstly, through the preprocessing of high spatial resolution remote sensing imagery (HSRRSI) and collecting the artificial samples of outdoor sports venues, the training data set required for object recognition of land cover features was constructed. Secondly, the Mask R-CNN was used as the basic training model to be adapted to cope with outdoor sports venues. Thirdly, the recognition results were compared with the four object-oriented machine learning classification methods in eCognition&#174. The experiment results of effectiveness verification show that the Mask R-CNN is superior to traditional methods not only in technical procedures but also in outdoor sports venues (football field, basketball court, tennis court and baseball field) recognition results, and it achieves the precision of 0.8927, a recall of 0.9356 and an average precision of 0.9235. Finally, from the aspect of practical engineering application, using and validating the well-trained model, an empirical application experiment was performed on the HSRRSI of Xicheng and Daxing District of Beijing respectively, and the generalization ability of the trained model of Mask R-CNN was thoroughly evaluated. 展开更多
关键词 Instance Recognition Urban REMOTE SENSING High spatial Resolution REMOTE SENSING IMAGERY Deep Learning MASK R-cnn
在线阅读 下载PDF
基于深度学习的表结构识别技术研究
8
作者 金莎 李林汉 +2 位作者 谢海龙 黄晓宏 董前前 《电力大数据》 2025年第1期32-39,共8页
随着新型电力系统中大模型应用的增多,处理和分析大量电力数据、提高电网运营效率成为关键。该文针对模型训练数据中表格规范化问题,提出了一种结合空间卷积神经网络(spatial convolutional neural network,SCNN)和网格卷积神经网络(gri... 随着新型电力系统中大模型应用的增多,处理和分析大量电力数据、提高电网运营效率成为关键。该文针对模型训练数据中表格规范化问题,提出了一种结合空间卷积神经网络(spatial convolutional neural network,SCNN)和网格卷积神经网络(grid convolutional neural network,Grid CNN)的深度学习方法,用于表格结构的识别与重建。首先,通过SCNN预测分割线掩码,并利用连通组件分析算法提取分隔线,构建单元格网格;然后,Grid CNN单元格合并模块对相邻单元格进行合并,以纠正分割错误,形成准确的表格结构。为提升模型效率,采用基于残差网络(residual network 18,ResNet-18)的特征金字塔网络(feature pyramid network,FPN)作为骨干网络,整合多尺度特征信息,增强表格结构的识别能力。实验结果表明,该方法不仅提高了表格识别的准确性,还优化了重建过程;在SciTSR和PubTabNet数据集上,本文方法的识别精确度均很高,为电力文档表格的预处理提供了一种高效准确的解决方案。 展开更多
关键词 表格处理 大语言模型 spatial cnn Grid cnn FPN
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究 被引量:1
9
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 二维卷积神经网络(2Dcnn) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于CNN_LSTM混合神经网络模型的学业预测 被引量:5
10
作者 杜晓明 葛世伦 王念新 《现代教育技术》 CSSCI 2021年第12期69-76,共8页
学业预测工作一直是教育界的研究热点,而现有的学业预测存在数据来源单一、预测精度提升有限的问题。基于此,文章利用卷积神经网络(Convolutional Neural Networks,CNN)在空间特征提取和长短期记忆神经网络(LongShort-TermMemory,LSTM)... 学业预测工作一直是教育界的研究热点,而现有的学业预测存在数据来源单一、预测精度提升有限的问题。基于此,文章利用卷积神经网络(Convolutional Neural Networks,CNN)在空间特征提取和长短期记忆神经网络(LongShort-TermMemory,LSTM)在时序特征提取方面的优势,构建了一种融合CNN与LSTM的CNNLSTM混合神经网络模型。之后,文章进行了不同类型特征组合实验和不同模型对比实验,实验结果表明:全部特征组合进行学业预测的精度优于所有的部分特征组合,CNNLSTM混合神经网络模型学业预测的准确度优于其它模型。基于CNNLSTM混合神经网络模型对学生学业进行预测,既可为解决数据来源单一问题提供参考,也可为教师因材施教和学生个性化学习提供依据。 展开更多
关键词 学业预测 cnn LSTM 空间特征 时序特征 深度学习
在线阅读 下载PDF
融合scSE模块的改进Mask R-CNN海洋锋检测方法 被引量:3
11
作者 徐慧芳 黄冬梅 +4 位作者 贺琪 杜艳玲 覃学标 时帅 胡安铎 《海洋通报》 CAS CSCD 北大核心 2022年第1期19-28,共10页
海洋锋是重要的中尺度海洋现象,具有数据量小、目标小、弱边缘等特性。针对实际检测任务中弱边缘、小目标海洋锋的检测精度低、错检及漏检率高等问题,融合scSE(spatial and channel Squeeze&Excitation)空间注意力模块构建了一种改... 海洋锋是重要的中尺度海洋现象,具有数据量小、目标小、弱边缘等特性。针对实际检测任务中弱边缘、小目标海洋锋的检测精度低、错检及漏检率高等问题,融合scSE(spatial and channel Squeeze&Excitation)空间注意力模块构建了一种改进的Mask R-CNN海洋锋检测模型。该方法首先对Mask R-CNN骨干网络结构进行改进,采用scSE模块引导的ResNet-50网络作为特征提取网络,通过加权策略对图像通道和空间位置进行特征突出,提升网络对重要特征的提取能力;其次,针对海洋锋目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,提高边界检测精度。最后,为验证方法的有效性,从训练数据和实验模型上,分别设计多组对比实验。实验结果表明,相比传统Mask R-CNN、YOLOv3神经网络及现有Mask R-CNN改进网络,本文方法对SST梯度影像数据集上的强、弱海洋锋检测效果最好,定位准确率(IoU,Intersection-over-union))及检测精度(mAP,Mean Average Precision)均达0.914以上。此外,对文中设计评估模型进行检测效率实验,结果发现在不同网络模型、不同迭代次数情况下,本文提出模型消耗时间最短,远低于YOLOv3网络完成训练时所用时长。 展开更多
关键词 scSE空间注意力 Mask R-cnn 海洋锋检测 Mask损失函数
在线阅读 下载PDF
CNN结合Transformer的深度伪造高效检测 被引量:12
12
作者 李颖 边山 +1 位作者 王春桃 卢伟 《中国图象图形学报》 CSCD 北大核心 2023年第3期804-819,共16页
目的 深度伪造视频检测是目前计算机视觉领域的热点研究问题。卷积神经网络和Vision Transformer(ViT)都是深度伪造检测模型中的基础结构,二者虽各有优势,但都面临训练和测试阶段耗时较长、跨压缩场景精度显著下降问题。针对这两类模型... 目的 深度伪造视频检测是目前计算机视觉领域的热点研究问题。卷积神经网络和Vision Transformer(ViT)都是深度伪造检测模型中的基础结构,二者虽各有优势,但都面临训练和测试阶段耗时较长、跨压缩场景精度显著下降问题。针对这两类模型各自的优缺点,以及不同域特征在检测场景下的适用性,提出了一种高效的CNN(convolutional neural network)结合Transformer的联合模型。方法 设计基于Efficient Net的空间域特征提取分支及频率域特征提取分支,以丰富单分支的特征表示。之后与Transformer的编码器结构、交叉注意力结构进行连接,对全局区域间特征相关性进行建模。针对跨压缩、跨库场景下深度伪造检测模型精度下降问题,设计注意力机制及嵌入方式,结合数据增广策略,提高模型在跨压缩率、跨库场景下的鲁棒性。结果 在Face Forensics++的4个数据集上与其他9种方法进行跨压缩率的精度比较,在交叉压缩率检测实验中,本文方法对Deepfake、Face2Face和Neural Textures伪造图像的检测准确率分别达到90.35%、71.79%和80.71%,优于对比算法。在跨数据集的实验中,本文模型同样优于其他方法,并且同设备训练耗时大幅缩减。结论 本文提出的联合模型综合了卷积神经网络和Vision Transformer的优点,利用了不同域特征的检测特性及注意力机制和数据增强机制,改善了深度伪造检测在跨压缩、跨库检测时的效果,使模型更加准确且高效。 展开更多
关键词 深度伪造检测 卷积神经网络(cnn) Vision Transformer(ViT) 空间域 频率域
原文传递
TSCNN:面向可穿戴心电信号监测与分析的卷积神经网络 被引量:4
13
作者 孟琭 葛康 +1 位作者 宋阳 杨东溟 《中国图象图形学报》 CSCD 北大核心 2020年第10期2281-2292,共12页
目的可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴... 目的可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴作为心电信号监测和采集设备制作了可穿戴设备的心电数据集。针对可穿戴心电数据干扰多、数据量大等特点,本文提出了一种针对可穿戴设备获得的心电信号进行自动分类的深层卷积神经网络,称之为时空卷积神经网络(time-spatial convolutional neural networks,TSCNN)。方法将原始的长时间心电信号分割为单个的心搏并与滤波后不同频段的心搏数据组合成十通道的数据输入到TSCNN中。TSCNN对每个心搏使用时间卷积和空间滤波来提取丰富的特征。采用小卷积核级联卷积的方式提高分类性能,并降低网络的参数量和计算量。结果在本文制作的心电数据集上进行了测试,并与其他4种心电分类算法:CNN(convolutional neural networks)、RNN(recurrent neural networks)、1-DCNN(1-dimensional convolution neural networks)和DCN(dense convolutional networks)进行了比较。实验结果显示,本文方法的分类准确率达到91.16%,优于其他4种方法。结论本文方法面向可穿戴心电数据,获得了较好的分类性能,可以有效监控穿戴者是否出现了心电异常情况。 展开更多
关键词 可穿戴设备 可穿戴心电数据集 心脏监测 卷积神经网络 空间滤波
原文传递
基于时空关节映射的骨架动作识别方法
14
作者 赵晨 彭舰 黄军豪 《计算机科学》 北大核心 2025年第10期106-114,共9页
近年来,基于骨架的动作识别任务受到了研究人员的广泛关注,并取得了长足的研究进展。图卷积网络和卷积神经网络作为强大且有效的模型范式,在骨架动作识别领域同样受到了研究人员的青睐。1)大多数基于GCN(Graph Convolutional Network)... 近年来,基于骨架的动作识别任务受到了研究人员的广泛关注,并取得了长足的研究进展。图卷积网络和卷积神经网络作为强大且有效的模型范式,在骨架动作识别领域同样受到了研究人员的青睐。1)大多数基于GCN(Graph Convolutional Network)的方法使用的是时间、空间分别建模的方式,这阻碍了时空信息的直接交互;2)基于CNN(Convolutional Neural Network)的方法有效地建模了时空信息,但相比于基于GCN的方法,它并没有很好地利用空间信息。针对上述问题,提出了一个新颖的时空信息聚合操作,称作时空节点映射(Spatial-Temporal Joint Mapping,STJM)。该方法既结合了基于GCN的方法中图的拓扑信息,又采用了基于CNN的方法来同时聚合时空信息。相较于传统的GCN方法,该方法将节点进行了高维映射,拥有更强的表意能力。在进行节点高维映射后,只需要一个简单的τ×K的卷积核即可同时聚合时间与空间特征。作为一个新颖的时空信息聚合模块,许多基于GCN的拓扑增强策略都可以应用在STJM block上。实验表明,将STJM作为一个即插即用的模块与现有模型进行结合,在NTU RGB+D 60和NTU RGB+D 120两个大规模骨架数据集上,其性能获得了显著提升。 展开更多
关键词 图卷积网络 卷积神经网络 动作识别 时空建模 骨架序列
在线阅读 下载PDF
耦合NDVI与纹理时序特征的地块作物遥感分类
15
作者 史洁宁 吴田军 +3 位作者 黄启厅 骆剑承 任应超 徐欣雨 《南方农业学报》 北大核心 2025年第1期29-40,共12页
【目的】充分挖掘遥感影像的时间和空间信息,准确识别地块作物类型,为作物类型空间分布制图、产量估计及农业生产决策等提供可靠的数据支持。【方法】以Google Earth影像为参考,获得美国加利福尼亚州金斯县完整的地块边界,利用多时相Sen... 【目的】充分挖掘遥感影像的时间和空间信息,准确识别地块作物类型,为作物类型空间分布制图、产量估计及农业生产决策等提供可靠的数据支持。【方法】以Google Earth影像为参考,获得美国加利福尼亚州金斯县完整的地块边界,利用多时相Sentinel-2影像构建地块归一化植被指数(NDVI)时间序列和时间—纹理二维表征图作为分类特征,NDVI时间序列捕捉作物生长的物候变化,时间—纹理二维表征图捕捉空间特征随时间的动态变化,进而使用卷积神经网络(CNN)+长短时记忆网络(LSTM)双流架构来联合时间和空间特征实现农田作物的准确识别。【结果】与仅使用NDVI时序的传统方法相比,纳入纹理时序后的方法明显提高分类精度,随机森林的分类精度由0.89提升至0.93,支持向量机的分类精度由0.88提升至0.93,表明加入空间特征的纹理时序能有效提升作物分类能力;而使用CNN+LSTM双流架构分类模型进行地块作物分类的总体精度达0.95,特别是葡萄和冬小麦的分类精度提升效果明显,F_(1)分别提升至0.90和0.92,表明相较于传统的分类器,使用CNN+LSTM双流架构可实现更精准的地块作物识别。【建议】在种植结构复杂、农作物生长习性相近的地区进行地块作物遥感分类时,考虑将纹理时序特征纳入分类体系,并使用CNN+LSTM双流架构分别捕捉作物生长的时间和空间特征。这种综合应用时间和空间信息的方法,能提升地块作物分类的准确度。 展开更多
关键词 作物分布 地块尺度 归一化植被指数(NDVI) 时间序列 空间纹理特征 cnn+LSTM双流架构
在线阅读 下载PDF
混合深度CNN联合注意力的高光谱图像分类 被引量:9
16
作者 王燕 吕艳萍 《计算机科学与探索》 CSCD 北大核心 2023年第2期385-395,共11页
深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出... 深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出了混合深度卷积联合注意力(HDC-Attention)的模型。首先利用核主成分分析(KPCA)和小批量K均值(MBK-means)对高光谱图像进行组合降维,有效地消除数据冗余并保留主要信息量,使得降维后的数据具有最佳区分度。然后将降维后的数据输入HDC网络进行充分的光谱-空间特征提取。最后利用光谱-空间注意力,重新分配光谱-空间特征的权重,增强有用的空谱特征,抑制无用的特征。提出的模型在三个公开数据集上进行了多次实验,在有限的标记样本下,三个数据集的OA、AA、Kappa分类指标均超过99%。 展开更多
关键词 高光谱图像分类 核主成分分析(KPCA) 卷积神经网络(cnn) 光谱-空间注意力机制 深度学习
在线阅读 下载PDF
基于CNN和MC的水文时间序列预测组合模型 被引量:11
17
作者 许国艳 朱进 +2 位作者 司存友 胡文斌 刘凡 《计算机与现代化》 2019年第11期23-28,33,共7页
对于水位精准的预测是预防洪涝灾害的有效措施。在深度学习不断发展的背景下,提出基于卷积神经网络和马尔科夫链的水文时间序列预测组合模型,该模型解决了现有算法未考虑站点之间空间的相关性、多维输入的时候会提高特征提取中数据重建... 对于水位精准的预测是预防洪涝灾害的有效措施。在深度学习不断发展的背景下,提出基于卷积神经网络和马尔科夫链的水文时间序列预测组合模型,该模型解决了现有算法未考虑站点之间空间的相关性、多维输入的时候会提高特征提取中数据重建的复杂度,以及单一模型只考虑水位时间序列线性部分而未考虑非线性部分所导致的预测精度低的问题。该组合模型首先运用卷积神经网络训练水位时间序列和降雨量时间序列对未来水位进行预测,并结合原始时间序列计算得到残差序列,再将使用马尔科夫链训练残差序列得到的残差预测结果和卷积神经网络预测的值相加得到最终的结果。实验表明,该方法与现有算法相比,在预报准确率上能够取得更好的效果。 展开更多
关键词 水文时间序列 空间相关性 预测 卷积神经网络 马尔科夫链
在线阅读 下载PDF
基于卷积金字塔网络的PPO算法求解作业车间调度问题 被引量:1
18
作者 徐帅 李艳武 +1 位作者 谢辉 牛晓伟 《现代制造工程》 北大核心 2025年第3期19-30,共12页
作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网... 作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网络(Convolutional Neural Network,CNN)的深度强化学习(Deep Reinforcement Learning,DRL)调度方法。设计了一种三通道状态表示方法,选取16种启发式调度规则作为动作空间,将奖励函数等价为最小化机器总空闲时间。为使训练得到的调度策略能够处理不同规模的调度算例,在卷积神经网络中使用空间金字塔池化(Spatial Pyramid Pooling,SPP),将不同维度的特征矩阵转化为固定长度的特征向量。在公开OR-Library的42个作业车间调度(Job-Shop Scheduling Problem,JSSP)算例上进行了计算实验。仿真实验结果表明,该算法优于单一启发式调度规则和遗传算法,在大部分算例中取得了比现有深度强化学习算法更好的结果,且平均完工时间最小。 展开更多
关键词 深度强化学习 作业车间调度 卷积神经网络 近端策略优化 空间金字塔池化
在线阅读 下载PDF
双卷积池化结构的3D-CNN高光谱遥感影像分类方法 被引量:26
19
作者 李冠东 张春菊 +1 位作者 高飞 张雪英 《中国图象图形学报》 CSCD 北大核心 2019年第4期639-654,共16页
目的高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感... 目的高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99. 65%和99. 82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。 展开更多
关键词 3D-cnn 双卷积池化结构 空谱联合特征 高光谱影像分类 正则化策略
原文传递
基于边缘计算的IoT异常检测与SDN威胁缓解研究
20
作者 魏红道 周敏 +3 位作者 杨立仁 张凯翔 王天柱 靳晓宁 《微电子学与计算机》 2025年第12期65-72,共8页
针对物联网中数据异常检测缓慢的问题,文章基于边缘计算模型设计了在异常检测系统中加入空间相关性检测算法来构建网络中的边缘节点,计算节点间的皮尔逊相关系数,从而建立相似性矩阵衡量关联程度,评估各个子序列的异常程度。设定相关性... 针对物联网中数据异常检测缓慢的问题,文章基于边缘计算模型设计了在异常检测系统中加入空间相关性检测算法来构建网络中的边缘节点,计算节点间的皮尔逊相关系数,从而建立相似性矩阵衡量关联程度,评估各个子序列的异常程度。设定相关性阈值z,用于筛选和提高检测精度。此外,文章还在SDN架构中集成CNN模型,使得系统能够实时处理和分析网络流量,增强系统的实时流数据分析能力。同时提高其对抗干扰的能力,确保在网络环境复杂多变的情况下依然能保持高效的异常检测性能。经过测试,文章对IoT网络中的异常检测正确率为98.53%,抵抗网络攻击响应时间为5 s,大大提高异常检测效率,保障网络架构的安全性能。 展开更多
关键词 边缘计算 异常检测 空间相关性 SDN安全架构 cnn模型
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部