期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New regularization method and iteratively reweighted algorithm for sparse vector recovery 被引量:2
1
作者 Wei ZHU Hui ZHANG Lizhi CHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期157-172,共16页
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design... Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm. 展开更多
关键词 regularization method iteratively reweighted algorithm(IR-algorithm) sparse vector recovery
在线阅读 下载PDF
Uniquely Decomposable Constellation Group-Based Sparse Vector Coding for Short Packet Communications
2
作者 Xuewan Zhang Hongyang Chen +3 位作者 Di Zhang Ganyu Qin Battulga Davaasambuu Takuro Sato 《China Communications》 SCIE CSCD 2023年第5期119-134,共16页
Sparse vector coding(SVC)is emerging as a potential technology for short packet communications.To further improve the block error rate(BLER)performance,a uniquely decomposable constellation group-based SVC(UDCG-SVC)is... Sparse vector coding(SVC)is emerging as a potential technology for short packet communications.To further improve the block error rate(BLER)performance,a uniquely decomposable constellation group-based SVC(UDCG-SVC)is proposed in this article.Additionally,in order to achieve an optimal BLER performance of UDCG-SVC,a problem to optimize the coding gain of UDCG-based superimposed constellation is formulated.Given the energy of rotation constellations in UDCG,this problem is solved by converting it into finding the maximized minimum Euclidean distance of the superimposed constellation.Simulation results demonstrate the validness of our derivation.We also find that the proposed UDCGSVC has better BLER performance compared to other SVC schemes,especially under the high order modulation scenarios. 展开更多
关键词 ultra-reliable and low latency communications sparse vector coding uniquely decomposable constellation group constellation rotation short packet communications
在线阅读 下载PDF
DC Disturbance Classification Method Based on Compressed Sensing and Encoder
3
作者 Huanan Yu Xiang Zhang Jian Wang 《Energy Engineering》 2025年第12期5055-5071,共17页
Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classificati... Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classification of DC power quality disturbances,this paper proposes a novel methodology integrating Compressed Sensing(CS)with an enhanced Stacked Denoising Autoencoder(SDAE).The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals.The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit(GOMP)algorithm to obtain sparse vectors as the final dataset.Subsequently,a Stacked Denoising Autoencoder model is constructed.The Root Mean Square Propagation(RMSprop)optimization algorithm is introduced to finetune network parameters,thereby reducing the probability of convergence to local optima.Finally,simulation analyses are conducted on five common types of DC power quality disturbance signals.Both raw signals and sparse vectors are utilized as datasets and fed into the encoder model.The results indicate that this method effectively reduces the feature dimensionality for DC power quality disturbance classification while improving both recognition efficiency and accuracy,with additional advantages in noise resistance. 展开更多
关键词 DC power quality disturbance classification compressed sensing sparse vector encoder
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部