Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism...Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous...Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate ener...Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.展开更多
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) prov...Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.展开更多
A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming mo...A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.展开更多
The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a l...The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a lot of resources of the receiver.For this reason,this paper proposes a new fast acquisition algorithm with High Signal-tonoise ratio(SNR)performance based on sparse fast Fourier transform(HSFFT).The algorithm first replaces the IFFT process of the traditional parallel code phase capture algorithm with inverse sparse fast Fourier transform(ISFFT)with better computing performance,and then uses linear search combined with code phase discrimination to replace the positioning loop and the estimation loop with poor noise immunity in ISFFT.Theoretical analysis and simulation results show that,compared with the existing SFFT parallel code phase capture algorithm,the calculation amount of this algorithm is reduced by 19%,and the SNR performance is improved by about 5dB.Compared with the classic FFT parallel code phase capture algorithm,the calculation amount of the algorithm in this paper is reduced by 43%,and when the capture probability is greater than 95%,the SNR performance of the two is approximately the same.展开更多
The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse f...The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im- plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.展开更多
Generative adversarial networks(GANs)are an unsupervised generative model that learns data distribution through adversarial training.However,recent experiments indicated that GANs are difficult to train due to the req...Generative adversarial networks(GANs)are an unsupervised generative model that learns data distribution through adversarial training.However,recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem.In this work,we propose a self-sparse generative adversarial network(Self-Sparse GAN)that reduces the parameter space and alleviates the zero gradient problem.In the Self-Sparse GAN,we design a self-adaptive sparse transform module(SASTM)comprising the sparsity decomposition and feature-map recombination,which can be applied on multi-channel feature maps to obtain sparse feature maps.The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator,which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps.We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the batch normalization layer and driving the weight of deconvolution layers away from being negative.The experimental results show that our method achieves the best Fréchet inception distance(FID)scores for image generation compared with Wasserstein GAN with gradient penalty(WGAN-GP)on MNIST,Fashion-MNIST,CIFAR-10,STL-10,mini-ImageNet,CELEBA-HQ,and LSUN bedrooms datasets,and the relative decrease of FID is 4.76%-21.84%.Meanwhile,an architectural sketch dataset(Sketch)is also used to validate the superiority of the proposed method.展开更多
基金supported by the National Science and Technology Major project(No.2016ZX05024001003)the Innovation Consortium Project of China Petroleum,and the Southwest Petroleum University(No.2020CX010201).
文摘Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
基金supported by the National Natural Science Foundation of China(62222120,61871391,U1933135)Shandong Provincial Natural Science Foundation(ZR2021YQ43).
文摘Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金supported in part by the National Natural Science Foundation of China (Nos.62171029,61931015,U1833203)Natural Science Foundation of Beijing Municipality (No.4172052)supported in part by the Basic Research Program of Jiangsu Province (No.SBK2019042353)。
文摘Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.
基金financially supported by The 2011 Prospective Research Project of SINOPEC(P11096)
文摘Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.
基金supported by the National Natural Science Foundation of China(The Key Research of Beidou Receiver based on SFT,61301089)
文摘A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.
文摘The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a lot of resources of the receiver.For this reason,this paper proposes a new fast acquisition algorithm with High Signal-tonoise ratio(SNR)performance based on sparse fast Fourier transform(HSFFT).The algorithm first replaces the IFFT process of the traditional parallel code phase capture algorithm with inverse sparse fast Fourier transform(ISFFT)with better computing performance,and then uses linear search combined with code phase discrimination to replace the positioning loop and the estimation loop with poor noise immunity in ISFFT.Theoretical analysis and simulation results show that,compared with the existing SFFT parallel code phase capture algorithm,the calculation amount of this algorithm is reduced by 19%,and the SNR performance is improved by about 5dB.Compared with the classic FFT parallel code phase capture algorithm,the calculation amount of the algorithm in this paper is reduced by 43%,and when the capture probability is greater than 95%,the SNR performance of the two is approximately the same.
基金Project supported by the National Natural Science Foundation of China (Nos. 61301027, 61375015, and 11274226)
文摘The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im- plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.
基金This work was supported by the National Natural Science Foundation of China(Nos.51921006 and 52008138)Heilongjiang Touyan Innovation Team Program(No.AUEA5640200320).
文摘Generative adversarial networks(GANs)are an unsupervised generative model that learns data distribution through adversarial training.However,recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem.In this work,we propose a self-sparse generative adversarial network(Self-Sparse GAN)that reduces the parameter space and alleviates the zero gradient problem.In the Self-Sparse GAN,we design a self-adaptive sparse transform module(SASTM)comprising the sparsity decomposition and feature-map recombination,which can be applied on multi-channel feature maps to obtain sparse feature maps.The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator,which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps.We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the batch normalization layer and driving the weight of deconvolution layers away from being negative.The experimental results show that our method achieves the best Fréchet inception distance(FID)scores for image generation compared with Wasserstein GAN with gradient penalty(WGAN-GP)on MNIST,Fashion-MNIST,CIFAR-10,STL-10,mini-ImageNet,CELEBA-HQ,and LSUN bedrooms datasets,and the relative decrease of FID is 4.76%-21.84%.Meanwhile,an architectural sketch dataset(Sketch)is also used to validate the superiority of the proposed method.