Due to the issue of long-horizon,a substantial number of visits to the state space is required during the exploration phase of reinforcement learning(RL)to gather valuable information.Addi-tionally,due to the challeng...Due to the issue of long-horizon,a substantial number of visits to the state space is required during the exploration phase of reinforcement learning(RL)to gather valuable information.Addi-tionally,due to the challenge posed by sparse rewards,the planning phase of reinforcement learning consumes a considerable amount of time on repetitive and unproductive tasks before adequately ac-cessing sparse reward signals.To address these challenges,this work proposes a space partitioning and reverse merging(SPaRM)framework based on reward-free exploration(RFE).The framework consists of two parts:the space partitioning module and the reverse merging module.The former module partitions the entire state space into a specific number of subspaces to expedite the explora-tion phase.This work establishes its theoretical sample complexity lower bound.The latter module starts planning in reverse from near the target and gradually extends to the starting state,as opposed to the conventional practice of starting at the beginning.This facilitates the early involvement of sparse rewards at the target in the policy update process.This work designs two experimental envi-ronments:a complex maze and a set of randomly generated maps.Compared with two state-of-the-art(SOTA)algorithms,experimental results validate the effectiveness and superior performance of the proposed algorithm.展开更多
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ...The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.展开更多
In reinforcement learning an agent may explore ineffectively when dealing with sparse reward tasks where finding a reward point is difficult.To solve the problem,we propose an algorithm called hierarchical deep reinfo...In reinforcement learning an agent may explore ineffectively when dealing with sparse reward tasks where finding a reward point is difficult.To solve the problem,we propose an algorithm called hierarchical deep reinforcement learning with automatic sub-goal identification via computer vision(HADS)which takes advantage of hierarchical reinforcement learning to alleviate the sparse reward problem and improve efficiency of exploration by utilizing a sub-goal mechanism.HADS uses a computer vision method to identify sub-goals automatically for hierarchical deep reinforcement learning.Due to the fact that not all sub-goal points are reachable,a mechanism is proposed to remove unreachable sub-goal points so as to further improve the performance of the algorithm.HADS involves contour recognition to identify sub-goals from the state image where some salient states in the state image may be recognized as sub-goals,while those that are not will be removed based on prior knowledge.Our experiments verified the effect of the algorithm.展开更多
Sparse rewards pose significant challenges in deep reinforcement learning as agents struggle to learn from experiences with limited reward signals.Hindsight experience replay(HER)addresses this problem by creating“sm...Sparse rewards pose significant challenges in deep reinforcement learning as agents struggle to learn from experiences with limited reward signals.Hindsight experience replay(HER)addresses this problem by creating“small goals”within a hierarchical decision model.However,HER does not consider the value of different episodes for agent learning.In this paper,we propose SPAHER,a framework for prioritizing hindsight experiences based on spatial position attention.SPAHER allows the agent to prioritize more valuable experiences in a manipulation task.It achieves this by calculating transition and trajectory spatial position functions to determine the value of each episode for experience replays.We evaluate SPAHER on eight robot manipulation tasks in the Fetch and Hand environments provided by OpenAI Gym.Simulation results show that our method improves the final mean success rate by an average of 3.63%compared to HER,especially in challenging Hand environments.Notably,these improvements are achieved without any increase in computation time.展开更多
Power system optimal dispatch with transient security constraints is commonly represented as transient securityconstrained optimal power flow(TSC-OPF).Deep reinforcement learning(DRL)-based TSC-OPF trains efficient de...Power system optimal dispatch with transient security constraints is commonly represented as transient securityconstrained optimal power flow(TSC-OPF).Deep reinforcement learning(DRL)-based TSC-OPF trains efficient decisionmaking agents that are adaptable to various scenarios and provide solution results quickly.However,due to the high dimensionality of the state space and action spaces,as well as the nonsmoothness of dynamic constraints,existing DRL-based TSCOPF solution methods face a significant challenge of the sparse reward problem.To address this issue,a fast-converging DRL method for optimal dispatch of large-scale power systems under transient security constraints is proposed in this paper.The Markov decision process(MDP)modeling of TSC-OPF is improved by reducing the observation space and smoothing the reward design,thus facilitating agent training.An improved deep deterministic policy gradient algorithm with curriculum learning,parallel exploration,and ensemble decision-making(DDPGCL-PE-ED)is introduced to drastically enhance the efficiency of agent training and the accuracy of decision-making.The effectiveness,efficiency,and accuracy of the proposed method are demonstrated through experiments in the IEEE 39-bus system and a practical 710-bus regional power grid.The source code of the proposed method is made public on GitHub.展开更多
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.184131KYSB20200033).
文摘Due to the issue of long-horizon,a substantial number of visits to the state space is required during the exploration phase of reinforcement learning(RL)to gather valuable information.Addi-tionally,due to the challenge posed by sparse rewards,the planning phase of reinforcement learning consumes a considerable amount of time on repetitive and unproductive tasks before adequately ac-cessing sparse reward signals.To address these challenges,this work proposes a space partitioning and reverse merging(SPaRM)framework based on reward-free exploration(RFE).The framework consists of two parts:the space partitioning module and the reverse merging module.The former module partitions the entire state space into a specific number of subspaces to expedite the explora-tion phase.This work establishes its theoretical sample complexity lower bound.The latter module starts planning in reverse from near the target and gradually extends to the starting state,as opposed to the conventional practice of starting at the beginning.This facilitates the early involvement of sparse rewards at the target in the policy update process.This work designs two experimental envi-ronments:a complex maze and a set of randomly generated maps.Compared with two state-of-the-art(SOTA)algorithms,experimental results validate the effectiveness and superior performance of the proposed algorithm.
基金supported by the Key Research and Development Program of Shaanxi(2022GY-089)the Natural Science Basic Research Program of Shaanxi(2022JQ-593).
文摘The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.
基金supported by the National Natural Science Foundation of China(61303108)Suzhou Key Industries Technological Innovation-Prospective Applied Research Project(SYG201804)+2 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Gentral UniversitiesJLU(93K172020K25)。
文摘In reinforcement learning an agent may explore ineffectively when dealing with sparse reward tasks where finding a reward point is difficult.To solve the problem,we propose an algorithm called hierarchical deep reinforcement learning with automatic sub-goal identification via computer vision(HADS)which takes advantage of hierarchical reinforcement learning to alleviate the sparse reward problem and improve efficiency of exploration by utilizing a sub-goal mechanism.HADS uses a computer vision method to identify sub-goals automatically for hierarchical deep reinforcement learning.Due to the fact that not all sub-goal points are reachable,a mechanism is proposed to remove unreachable sub-goal points so as to further improve the performance of the algorithm.HADS involves contour recognition to identify sub-goals from the state image where some salient states in the state image may be recognized as sub-goals,while those that are not will be removed based on prior knowledge.Our experiments verified the effect of the algorithm.
基金supported by the Natural Science Foundation of Shaanxi Province,China(No.2022JQ-661)the Project of Science and Technology Development Plan in Hangzhou,China(No.202202B38)the Xidian-FIAS International Joint Research Center,China.
文摘Sparse rewards pose significant challenges in deep reinforcement learning as agents struggle to learn from experiences with limited reward signals.Hindsight experience replay(HER)addresses this problem by creating“small goals”within a hierarchical decision model.However,HER does not consider the value of different episodes for agent learning.In this paper,we propose SPAHER,a framework for prioritizing hindsight experiences based on spatial position attention.SPAHER allows the agent to prioritize more valuable experiences in a manipulation task.It achieves this by calculating transition and trajectory spatial position functions to determine the value of each episode for experience replays.We evaluate SPAHER on eight robot manipulation tasks in the Fetch and Hand environments provided by OpenAI Gym.Simulation results show that our method improves the final mean success rate by an average of 3.63%compared to HER,especially in challenging Hand environments.Notably,these improvements are achieved without any increase in computation time.
基金supported in part by the National Natural Science Foundation of China(No.52107104)。
文摘Power system optimal dispatch with transient security constraints is commonly represented as transient securityconstrained optimal power flow(TSC-OPF).Deep reinforcement learning(DRL)-based TSC-OPF trains efficient decisionmaking agents that are adaptable to various scenarios and provide solution results quickly.However,due to the high dimensionality of the state space and action spaces,as well as the nonsmoothness of dynamic constraints,existing DRL-based TSCOPF solution methods face a significant challenge of the sparse reward problem.To address this issue,a fast-converging DRL method for optimal dispatch of large-scale power systems under transient security constraints is proposed in this paper.The Markov decision process(MDP)modeling of TSC-OPF is improved by reducing the observation space and smoothing the reward design,thus facilitating agent training.An improved deep deterministic policy gradient algorithm with curriculum learning,parallel exploration,and ensemble decision-making(DDPGCL-PE-ED)is introduced to drastically enhance the efficiency of agent training and the accuracy of decision-making.The effectiveness,efficiency,and accuracy of the proposed method are demonstrated through experiments in the IEEE 39-bus system and a practical 710-bus regional power grid.The source code of the proposed method is made public on GitHub.