期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
1
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 sparse graph neural network Polar codes Bursty interference sparse factor graph Message passing neural network
在线阅读 下载PDF
Comparison between several multi-parameter seismic inversion methods in identifying plutonic igneous rocks 被引量:6
2
作者 Yaog Haijun Xu Yongzhong +4 位作者 Huang Zhibin Chen Shizhong Yang Zhilin Wu Gang Xiao Zhongyao 《Mining Science and Technology》 EI CAS 2011年第3期325-331,共7页
With the objective of establishing the necessary conditions for 3-D seismic data from a Permian plutonic oilfield in western China, we compared the technology of several multi-parameter seismic inversion methods in id... With the objective of establishing the necessary conditions for 3-D seismic data from a Permian plutonic oilfield in western China, we compared the technology of several multi-parameter seismic inversion methods in identifying igneous rocks. The most often used inversion methods are Constrained Sparse Spike Inversion (CSSI), Artificial Neural Network Inversion (ANN) and GR Pseudo-impedance Inversion. Through the application of a variety of inversion methods with log curves correction, we obtained relatively high-resolution impedance and velocity sections, effectively identifying the lithology of Permian igneous rocks and inferred lateral variation in the lithology of igneous rocks. By means of a comprehensive comparative study, we arrived at the following conclusions: the CSSI inversion has good waveform continuity, and the ANN inversion has lower resolution than the CSSI inversion. The inversion results show that multi-parameter seismic inversion methods are an effective solution to the identification of igneous rocks. 展开更多
关键词 Constrained sparse Spike InversionArtificial neural network InversionMulti-parameter inversionIdentification of igneous rocks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部