期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Performance Prediction Based on Statistics of Sparse Matrix-Vector Multiplication on GPUs 被引量:1
1
作者 Ruixing Wang Tongxiang Gu Ming Li 《Journal of Computer and Communications》 2017年第6期65-83,共19页
As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo a... As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices. 展开更多
关键词 sparse matrix-vector multiplication Performance Prediction GPU Normal DISTRIBUTION UNIFORM DISTRIBUTION
暂未订购
TEB:GPU上矩阵分解重构的高效SpMV存储格式 被引量:2
2
作者 王宇华 张宇琪 +2 位作者 何俊飞 徐悦竹 崔环宇 《计算机科学与探索》 CSCD 北大核心 2024年第4期1094-1108,共15页
稀疏矩阵向量乘法(SpMV)是科学与工程领域中一个至关重要的计算过程,CSR(compressed sparse row)格式是最常用的稀疏矩阵存储格式之一,在图形处理器(GPU)平台上实现并行SpMV的过程中,其只存储稀疏矩阵的非零元,避免零元素填充所带来的... 稀疏矩阵向量乘法(SpMV)是科学与工程领域中一个至关重要的计算过程,CSR(compressed sparse row)格式是最常用的稀疏矩阵存储格式之一,在图形处理器(GPU)平台上实现并行SpMV的过程中,其只存储稀疏矩阵的非零元,避免零元素填充所带来的计算冗余,节约存储空间,但存在着负载不均衡的问题,浪费了计算资源。针对上述问题,对近年来效果良好的存储格式进行了研究,提出了一种逐行分解重组存储格式——TEB(threshold-exchangeorder block)格式。该格式采用启发式阈值选择算法确定合适分割阈值,并结合基于重排序的行归并算法,对稀疏矩阵进行重构分解,使得块与块之间非零元个数尽可能得相近,其次结合CUDA(computer unified device architecture)线程技术,提出了基于TEB存储格式的子块间并行SpMV算法,能够合理分配计算资源,解决负载不均衡问题,从而提高SpMV并行计算效率。为了验证TEB存储格式的有效性,在NVIDIA Tesla V100平台上进行实验,结果表明TEB相较于PBC(partition-block-CSR)、AMF-CSR(adaptive multi-row folding of CSR)、CSR-Scalar(compressed sparse row-scalar)和CSR5(compressed sparse row 5)存储格式,在SpMV的时间性能方面平均可提升3.23、5.83、2.33和2.21倍;在浮点计算性能方面,平均可提高3.36、5.95、2.29和2.13倍。 展开更多
关键词 稀疏矩阵向量乘法(spmv) 重新排序 CSR格式 负载均衡 存储格式 图形处理器(GPU)
在线阅读 下载PDF
SpMV计算的ARM和FPGA异构加速器设计
3
作者 朱明达 薛济擎 艾纯瑶 《电讯技术》 北大核心 2024年第2期302-309,共8页
针对稀疏矩阵向量乘(Sparse Matrix-Vector Multiplication,SpMV)在边缘端实施效率不高的问题,以稀疏矩阵的存储格式、SpMV的现场可编程门阵列(Field Programmable Gate Array,FPGA)加速为研究对象,提出了一种多端口改进的行压缩存储格... 针对稀疏矩阵向量乘(Sparse Matrix-Vector Multiplication,SpMV)在边缘端实施效率不高的问题,以稀疏矩阵的存储格式、SpMV的现场可编程门阵列(Field Programmable Gate Array,FPGA)加速为研究对象,提出了一种多端口改进的行压缩存储格式(Modified Compressed Sparse Row Format,MCSR)与ARM+FPGA架构任务级数据级硬件优化相结合的加速方法。使用多个端口并行存取数据来提高计算并行度;使用数据流、循环流水实现循环间、循环内的并行加速;使用数组分割、流传输实现数据的细粒度并行缓存与计算;使用ARM+FPGA架构,ARM完成对系统的控制,将计算卸载到FPGA并行加速。实验结果表明,并行加速优化后的ARM+FPGA方案相较于单ARM方案最高可达10倍的加速效果,而且增加的资源消耗在可接受范围内,矩阵规模越大非零值越多加速效果越明显。研究成果在边缘端实施SpMV计算方面有一定实用价值。 展开更多
关键词 稀疏矩阵向量乘(spmv) 异构加速器 硬件加速
在线阅读 下载PDF
面向国产申威26010众核处理器的SpMV实现与优化 被引量:13
4
作者 刘芳芳 杨超 +2 位作者 袁欣辉 吴长茂 敖玉龙 《软件学报》 EI CSCD 北大核心 2018年第12期3921-3932,共12页
世界首台峰值性能超过100P的超级计算机——神威太湖之光已经研制完成,该超级计算机采用了国产申威异构众核处理器,该处理器不同于现有的纯CPU,CPU-MIC,CPU-GPU架构,采用了主-从核架构,单处理器峰值计算能力为3TFlops/s,访存带宽为130GB... 世界首台峰值性能超过100P的超级计算机——神威太湖之光已经研制完成,该超级计算机采用了国产申威异构众核处理器,该处理器不同于现有的纯CPU,CPU-MIC,CPU-GPU架构,采用了主-从核架构,单处理器峰值计算能力为3TFlops/s,访存带宽为130GB/s.稀疏矩阵向量乘SpMV(sparse matrix-vector multiplication)是科学与工程计算中的一个非常重要的核心函数,众所周知,其是带宽受限型的,且存在间接访存操作.国产申威处理器给稀疏矩阵向量乘的高效实现带来了很大的挑战.针对申威处理器提出了一种CSR格式SpMV操作的通用异构众核并行算法,该算法从任务划分、LDM空间划分方面进行精细设计,提出了一套动静态buffer的缓存机制以提升向量x的访存命中率,提出了一套动静态的任务调度方法以实现负载均衡.另外还分析了该算法中影响SpMV性能的几个关键因素,并开展了自适应优化,进一步提升了性能.采用Matrix Market矩阵集中具有代表性的16个稀疏矩阵进行了测试,相比主核版最高有10倍左右的加速,平均加速比为6.51.通过采用主核版CSR格式SpMV的访存量进行分析,测试矩阵最高可达该处理器实测带宽的86%,平均可达到47%. 展开更多
关键词 稀疏矩阵向量乘 spmv 申威26010处理器 异构众核并行 自适应优化
在线阅读 下载PDF
基于HYB格式SpMV在新一代申威架构上的实现与优化 被引量:1
5
作者 王鑫 彭健 《计算机工程与科学》 CSCD 北大核心 2023年第10期1754-1762,共9页
稀疏矩阵与稠密向量乘SpMV在高性能计算领域有着广泛的应用。稀疏矩阵因其非零元素分布的稀疏性和不规则性,使得运算的并行化较稠密矩阵难度更大。因此,稀疏矩阵向量乘法的性能优化一直都是高性能计算领域中的研究重点。基于稀疏矩阵的... 稀疏矩阵与稠密向量乘SpMV在高性能计算领域有着广泛的应用。稀疏矩阵因其非零元素分布的稀疏性和不规则性,使得运算的并行化较稠密矩阵难度更大。因此,稀疏矩阵向量乘法的性能优化一直都是高性能计算领域中的研究重点。基于稀疏矩阵的HYB存储格式,面向国产新一代申威异构众核处理器SW26010P,设计了一种并行SpMV算法及其性能优化方案。并针对HYB存储格式的阈值选取难点,提出了一种多次迭代最大类间方差的方法,以确定HYB格式的阈值。实验结果表明,相比主核上的串行算法,并行SpMV算法可以获得23.36的平均加速比和34.85的最高加速比。 展开更多
关键词 申威众核处理器 稀疏矩阵向量乘法 最大类间方差法 并行计算
在线阅读 下载PDF
RAM(h)模型下SpMV存储访问复杂度的分析
6
作者 袁娥 张云泉 孙相征 《计算机工程与设计》 CSCD 北大核心 2009年第3期613-618,共6页
稀疏矩阵向量乘(SpMV)采取压缩行存储格式的算法性能非常差,而寄存器分块算法可以使得数据尽量在靠近处理器的存储层次中访问而提高性能。利用RAM(h)模型进行分析和比较不同算法形式的存储访问复杂度,可以比较两种算法的优劣。通过RAM(h... 稀疏矩阵向量乘(SpMV)采取压缩行存储格式的算法性能非常差,而寄存器分块算法可以使得数据尽量在靠近处理器的存储层次中访问而提高性能。利用RAM(h)模型进行分析和比较不同算法形式的存储访问复杂度,可以比较两种算法的优劣。通过RAM(h)分析SpMV两种实现形式的存储访问复杂度,同时在奔腾四平台上,测试了7个稀疏矩阵的SpMV性能,并统计了这两种算法中L1,L2,和TLB的缺失率,实验结果与模型分析的数据一致。 展开更多
关键词 spmv 稀疏矩阵向量乘 RAM(h)模型 存储访问复杂度
在线阅读 下载PDF
基于异构平台的稀疏矩阵向量乘自适应计算优化 被引量:1
7
作者 李博 黄建强 +1 位作者 黄东强 王晓英 《计算机应用》 CSCD 北大核心 2024年第12期3867-3875,共9页
稀疏矩阵向量乘(SpMV)是一种重要的数值线性代数运算,现有的优化存在预处理及通信时间考虑不全面、存储结构不具有普适性等问题。为了解决这些问题,提出异构平台下SpMV的自适应优化方案。所提方案利用皮尔逊相关系数确定相关度高的特征... 稀疏矩阵向量乘(SpMV)是一种重要的数值线性代数运算,现有的优化存在预处理及通信时间考虑不全面、存储结构不具有普适性等问题。为了解决这些问题,提出异构平台下SpMV的自适应优化方案。所提方案利用皮尔逊相关系数确定相关度高的特征参数,并使用基于梯度提升决策树(GBDT)的极端梯度提升(XGBoost)和轻量级梯度提升(LightGBM)算法训练预测模型,以确定某一稀疏矩阵更优的存储格式。利用网格搜索确定模型训练时更优的模型超参数,使这2种算法选择更适合的存储结构的准确率都超过85%。此外,对于预测存储结构为混合(HYB)格式的稀疏矩阵,在GPU和CPU上分别计算其中的等长列(ELL)与坐标(COO)存储格式部分,建立基于CPU+GPU的并行混合计算模式;同时为小数据量的稀疏矩阵选择硬件平台,提高运算速度。实验结果表明,自适应计算优化相较于cuSPARSE库中的压缩稀疏行(CSR)存储格式计算的平均加速比可以达到1.4,相较于按照HYB和ELL存储格式计算的平均加速比则可以分别达到2.1和2.6。 展开更多
关键词 稀疏矩阵向量乘 自适应优化 皮尔逊相关系数 极端梯度提升 轻量级梯度提升机器学习
在线阅读 下载PDF
高性能稀疏矩阵向量乘的程序设计综述
8
作者 杜臻 谭光明 孙凝晖 《高技术通讯》 CAS 北大核心 2024年第8期807-823,共17页
稀疏矩阵向量乘(SpMV)广泛应用于科学计算、图计算、数据分析等领域,是自现代计算机诞生以来经久不衰且挑战依旧的研究热点。本文系统回顾了20世纪70年代以来稀疏矩阵向量乘程序设计的发展脉络和各阶段的代表性工作;分析比较了这一领域... 稀疏矩阵向量乘(SpMV)广泛应用于科学计算、图计算、数据分析等领域,是自现代计算机诞生以来经久不衰且挑战依旧的研究热点。本文系统回顾了20世纪70年代以来稀疏矩阵向量乘程序设计的发展脉络和各阶段的代表性工作;分析比较了这一领域4条技术路线,即人工程序设计、自动调优器、稀疏编译器和自动程序设计器,在当今的流行方法;并在此基础上对高性能稀疏矩阵向量乘程序设计的研究趋势做出预测,力图给学习者和研究者带来有益的知识与启示。 展开更多
关键词 稀疏矩阵向量乘(spmv) 稀疏矩阵格式 自动调优 稀疏编译器 高性能计算 并行算法
在线阅读 下载PDF
基于GPU对角稀疏矩阵向量乘法的动态划分算法
9
作者 涂进兴 李志雄 黄建强 《计算机应用》 CSCD 北大核心 2024年第11期3521-3529,共9页
在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)... 在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。 展开更多
关键词 图形处理器 对角稀疏矩阵 稀疏矩阵向量乘法 动态划分 共享内存
在线阅读 下载PDF
基于FPGA的稀疏矩阵向量乘的设计研究 被引量:9
10
作者 张禾 陈客松 《计算机应用研究》 CSCD 北大核心 2014年第6期1756-1759,共4页
作为典型的不规则算法,稀疏矩阵向量乘的计算过程具有非常低的访存局部性和计算访存比,因此在基于cache的通用处理器上计算效率很低。提出了一种面向可重构计算平台的基于IEEE-754浮点数据格式标准的稀疏矩阵向量乘算法加速器的设计。... 作为典型的不规则算法,稀疏矩阵向量乘的计算过程具有非常低的访存局部性和计算访存比,因此在基于cache的通用处理器上计算效率很低。提出了一种面向可重构计算平台的基于IEEE-754浮点数据格式标准的稀疏矩阵向量乘算法加速器的设计。在一维划分的行压缩稀疏矩阵数据存储技术以及计算部件的流水化设计的基础上,提出了一种基于单个浮点加法器的无阻塞累加器设计。通过实验验证表明,简化了算法的设计提高了算法执行的并行度和外部存储器的带宽利用率,获得了相对于传统处理器1.37-2.60倍的性能加速比。 展开更多
关键词 稀疏矩阵向量乘 现场可编程逻辑门阵列 可重构计算 并行算法
在线阅读 下载PDF
基于深度学习的稀疏矩阵向量乘运算性能预测模型 被引量:3
11
作者 曹中潇 冯仰德 +5 位作者 王珏 闵维潇 姚铁锤 高岳 王丽华 高付海 《计算机工程》 CAS CSCD 北大核心 2022年第2期86-91,共6页
稀疏矩阵向量乘(SpMV)是求解稀疏线性方程组的计算核心,被广泛应用在经济学模型、信号处理等科学计算和工程应用中,对于SpMV及其调优技术的研究有助于提升解决相关领域问题的运算效率。传统SpMV自动调优方法基于硬件平台的体系结构参数... 稀疏矩阵向量乘(SpMV)是求解稀疏线性方程组的计算核心,被广泛应用在经济学模型、信号处理等科学计算和工程应用中,对于SpMV及其调优技术的研究有助于提升解决相关领域问题的运算效率。传统SpMV自动调优方法基于硬件平台的体系结构参数设置来提升SpMV性能,但巨大的参数设置量导致搜索空间变大且自动调优耗时大幅增加。采用深度学习技术,基于卷积神经网络,构建由双通道稀疏矩阵特征融合以及稀疏矩阵特征与体系结构特征融合组成的SpMV运算性能预测模型,实现快速自动调优。为提高SpMV运算时间的预测精度,选取特征数据并利用箱形图统计SpMV时间信息,同时在佛罗里达稀疏矩阵数据集上进行实验设计与验证,结果表明,该模型的SpMV运算时间预测准确率达到80%以上,并且具有较强的泛化能力。 展开更多
关键词 稀疏矩阵向量乘 自动调优 深度学习 卷积神经网络 特征融合
在线阅读 下载PDF
基于GPU的稀疏矩阵存储格式优化研究 被引量:6
12
作者 杨世伟 蒋国平 +1 位作者 宋玉蓉 涂潇 《计算机工程》 CAS CSCD 北大核心 2019年第9期23-31,39,共10页
稀疏矩阵存储格式中的稀疏矩阵向量乘(SpMV)计算效率低下,且分块行列(BRC)存储格式的计算结果缺少再现性和确定性。为此,提出一种改进的BRCP存储格式。采用不同的二维分块策略,根据矩阵各行非零元素分布的统计特性自适应调节分块参数,提... 稀疏矩阵存储格式中的稀疏矩阵向量乘(SpMV)计算效率低下,且分块行列(BRC)存储格式的计算结果缺少再现性和确定性。为此,提出一种改进的BRCP存储格式。采用不同的二维分块策略,根据矩阵各行非零元素分布的统计特性自适应调节分块参数,提高SpMV在GPU平台上的并行性,并设计基于快速分段求和算法的GPU内核函数,保证计算结果的确定性及其在不同GPU平台上的再现性。实验结果表明,BRCP存储格式具有较高的计算效率,相比BRC存储格式可减少并行环境中的SpMV计算误差,并提高PageRank排序的准确率。 展开更多
关键词 稀疏矩阵向量乘 计算统一设备架构 图形处理器 存储格式 浮点运算
在线阅读 下载PDF
面向稀疏矩阵向量乘的DMA设计与验证
13
作者 曹亚松 刘胜 《计算机与数字工程》 2019年第11期2686-2690,共5页
稀疏矩阵向量乘法(SpMV)是迭代法求解大型线性方程组的核心算法,被广泛应用在科研和工程中。高性能共轭梯度算法(HPCG)是评价高性能计算系统性能的测试程序之一,需要多次调用SpMV进行迭代计算。但是,SpMV计算过程中包含大量不规则访存操... 稀疏矩阵向量乘法(SpMV)是迭代法求解大型线性方程组的核心算法,被广泛应用在科研和工程中。高性能共轭梯度算法(HPCG)是评价高性能计算系统性能的测试程序之一,需要多次调用SpMV进行迭代计算。但是,SpMV计算过程中包含大量不规则访存操作,降低了系统计算性能。基于X-DSP项目,在DMA中设计一条面向SpMV的专用数据通道实现不规则访存的功能,提高HPCG算法运算速度。设计代码的验证与综合结果表明预期的功能实现正确,且满足项目对时序、面积和功耗的要求。 展开更多
关键词 稀疏矩阵向量乘法(spmv) 直接内存存取(DMA) 压缩稀疏行(CSR)
在线阅读 下载PDF
PRF: a process-RAM-feedback performance model to reveal bottlenecks and propose optimizations
14
作者 Xie Zhen Tan Guangming +1 位作者 Liu Weifeng Sun Ninghui 《High Technology Letters》 EI CAS 2020年第3期285-298,共14页
Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reac... Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reaching high accurate prediction of both regular and irregular programs on various hardware configurations are still not trivial.This work proposes a novel model called process-RAM-feedback(PRF)to quantify the overhead of computation and data transmission time on general-purpose multi-core processors.The PRF model predicts the cost of instruction for singlecore by a directed acyclic graph(DAG)and the transmission time of memory access between each memory hierarchy through a newly designed cache simulator.By using performance modeling and feedback optimization method,this paper uses PRF model to analyze and optimize convolution,sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular kernel to irregular and data dependence.Through the PRF model,it obtains optimization guidance with various sparsity structures,algorithm designs,and instruction sets support on different data sizes. 展开更多
关键词 performance model feedback optimization CONVOLUTION sparse matrix-vector multiplication sn-sweep
在线阅读 下载PDF
A Survey on the Performance of Krylov Subspace Methods in High Order Compact Schemes for Solving Poisson's Equation for Application in Incompressible Fluid Flow Solvers
15
作者 Iman Farahbakhsh Benyamin Barani Nia Mehdi Dehghan 《Annals of Applied Mathematics》 2025年第2期239-266,共28页
The efficiency of three Krylov subspace methods with their ILU0-preconditioned version in solving the systems with the nonadiagonal sparse matrix is examined.The systems have arisen from the discretization of Poisson&... The efficiency of three Krylov subspace methods with their ILU0-preconditioned version in solving the systems with the nonadiagonal sparse matrix is examined.The systems have arisen from the discretization of Poisson's equation using the 4th and 6th-order compact schemes.Four matrix-vector multiplication techniques based on four sparse matrix storage schemes are considered in the algorithm of the Krylov subspace methods and their effects are explored.The convergence history,error reduction,iteration-resolution relation and CPU-time are addressed.The efficacy of various methods is evaluated against a benchmark scenario in which the conventional second-order central difference scheme is employed to discretize Poisson's equation.The Krylov subspace methods,paired with four distinct matrix-vector multiplication strategies across three discretization approaches,are tested and implemented within an incompressible fluid flow solver to solve the elliptic segment of the equations.The resulting solution process CPU-time surface gives a new vision regarding speeding up a CFD code with proper selection of discretization stencil and matrixvector multiplication technique. 展开更多
关键词 High order compact Krylov subspace methods Navier-Stokes equations Poisson's equation CPU-time matrix-vector multiplication sparse storage schemes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部