Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture...Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture local and asymmetric deformations remains a challenge in existing literature.A measure of such local deformations may be a relevant index for monitoring the rehabilitation exercises of patients suffering from Par-kinson’s or Alzheimer’s disease or those recovering from a stroke.Methods In this paper,a complete framework that allows the construction of a 3D morphable shape model(3DMM)of the face is presented for fitting to a target RGB image.The model has the specific characteristic of being based on localized components of deformation.The fitting transformation is performed from 3D to 2D and guided by the correspondence between landmarks detected in the target image and those manually annotated on the average 3DMM.The fitting also has the distinction of being performed in two steps to disentangle face deformations related to the identity of the target subject from those induced by facial actions.Results The method was experimentally validated using the MICC-3D dataset,which includes 11 subjects.Each subject was imaged in one neutral pose and while performing 18 facial actions that deform the face in localized and asymmetric ways.For each acquisition,3DMM was fit to an RGB frame whereby,from the apex facial action and the neutral frame,the extent of the deformation was computed.The results indicate that the proposed approach can accurately capture face deformation,even localized and asymmetric deformations.Conclusion The proposed framework demonstrated that it is possible to measure deformations of a reconstructed 3D face model to monitor facial actions performed in response to a set of targets.Interestingly,these results were obtained using only RGB targets,without the need for 3D scans captured with costly devices.This paves the way for the use of the proposed tool in remote medical rehabilitation monitoring.展开更多
To improve the performance of sound source localization based on distributed microphone arrays in noisy and reverberant environments,a sound source localization method was proposed.This method exploited the inherent s...To improve the performance of sound source localization based on distributed microphone arrays in noisy and reverberant environments,a sound source localization method was proposed.This method exploited the inherent spatial sparsity to convert the localization problem into a sparse recovery problem based on the compressive sensing(CS) theory.In this method two-step discrete cosine transform(DCT)-based feature extraction was utilized to cover both short-time and long-time properties of the signal and reduce the dimensions of the sparse model.Moreover,an online dictionary learning(DL) method was used to dynamically adjust the dictionary for matching the changes of audio signals,and then the sparse solution could better represent location estimations.In addition,we proposed an improved approximate l_0norm minimization algorithm to enhance reconstruction performance for sparse signals in low signal-noise ratio(SNR).The effectiveness of the proposed scheme is demonstrated by simulation results where the locations of multiple sources can be obtained in the noisy and reverberant conditions.展开更多
文摘Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture local and asymmetric deformations remains a challenge in existing literature.A measure of such local deformations may be a relevant index for monitoring the rehabilitation exercises of patients suffering from Par-kinson’s or Alzheimer’s disease or those recovering from a stroke.Methods In this paper,a complete framework that allows the construction of a 3D morphable shape model(3DMM)of the face is presented for fitting to a target RGB image.The model has the specific characteristic of being based on localized components of deformation.The fitting transformation is performed from 3D to 2D and guided by the correspondence between landmarks detected in the target image and those manually annotated on the average 3DMM.The fitting also has the distinction of being performed in two steps to disentangle face deformations related to the identity of the target subject from those induced by facial actions.Results The method was experimentally validated using the MICC-3D dataset,which includes 11 subjects.Each subject was imaged in one neutral pose and while performing 18 facial actions that deform the face in localized and asymmetric ways.For each acquisition,3DMM was fit to an RGB frame whereby,from the apex facial action and the neutral frame,the extent of the deformation was computed.The results indicate that the proposed approach can accurately capture face deformation,even localized and asymmetric deformations.Conclusion The proposed framework demonstrated that it is possible to measure deformations of a reconstructed 3D face model to monitor facial actions performed in response to a set of targets.Interestingly,these results were obtained using only RGB targets,without the need for 3D scans captured with costly devices.This paves the way for the use of the proposed tool in remote medical rehabilitation monitoring.
基金supported by the Doctoral Program of Higher Education of China(20133207120007)the National Natural Science Foundation of China(61405094)+1 种基金the Open Research Fund of Jiangsu Key Laboratory of Meteorological Observation and Information Processing(KDXS1408)the Science and Technology Support Project of Jiangsu Province-Industry(BE2014139)
文摘To improve the performance of sound source localization based on distributed microphone arrays in noisy and reverberant environments,a sound source localization method was proposed.This method exploited the inherent spatial sparsity to convert the localization problem into a sparse recovery problem based on the compressive sensing(CS) theory.In this method two-step discrete cosine transform(DCT)-based feature extraction was utilized to cover both short-time and long-time properties of the signal and reduce the dimensions of the sparse model.Moreover,an online dictionary learning(DL) method was used to dynamically adjust the dictionary for matching the changes of audio signals,and then the sparse solution could better represent location estimations.In addition,we proposed an improved approximate l_0norm minimization algorithm to enhance reconstruction performance for sparse signals in low signal-noise ratio(SNR).The effectiveness of the proposed scheme is demonstrated by simulation results where the locations of multiple sources can be obtained in the noisy and reverberant conditions.