In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e...In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.展开更多
Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor...Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.展开更多
LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based ...LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.展开更多
Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands.Band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-...Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands.Band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover classification and higher level image analysis.In this paper,we propose a new band selection algorithm using sparse nonnegative matrix factorization (sparse NMF).Though acting as a clustering method for band selection,sparse NMF need not consider the distance metric between different spectral bands,which is often the key step for most common clustering-based band selection methods.By imposing sparsity on the coefficient matrix,the bands' clustering assignments can be easily indicated through the largest entry in each column of the matrix.Experimental results showed that sparse NMF provides considerable insight into the clustering-based band selection problem and the selected bands are good for land-cover classification.展开更多
In this paper, we establish a class of sparse update algorithm based on matrix triangular factorizations for solving a system of sparse equations. The local Q-superlinear convergence of the algorithm is proved without...In this paper, we establish a class of sparse update algorithm based on matrix triangular factorizations for solving a system of sparse equations. The local Q-superlinear convergence of the algorithm is proved without introducing an m-step refactorization. We compare the numerical results of the new algorithm with those of the known algorithms, The comparison implies that the new algorithm is satisfactory.展开更多
Factor analysis which studies correlation matrices is an effective means of data reduction whoseinference on the correlation matrix typically requires the number of random variables, p, to berelatively small and the s...Factor analysis which studies correlation matrices is an effective means of data reduction whoseinference on the correlation matrix typically requires the number of random variables, p, to berelatively small and the sample size, n, to be approaching infinity. In contemporary data collection for biomedical studies, disease surveillance and genetics, p > n limits the use of existingfactor analysis methods to study the correlation matrix. The motivation for the research herecomes from studying the correlation matrix of log annual cancer mortality rate change for p = 59cancer types from 1969 to 2008 (n = 39) in the U.S.A. We formalise a test statistic to perform inference on the structure of the correlation matrix when p > n. We develop an approach based ongroup sequential theory to estimate the number of relevant factors to be extracted. To facilitateinterpretation of the extracted factors, we propose a BIC (Bayesian Information Criterion)-typecriterion to produce a sparse factor loading representation. The proposed methodology outperforms competing ad hoc methodologies in simulation analyses, and identifies three significant underlying factors responsible for the observed correlation between cancer mortality ratechanges.展开更多
Gene expression is a critical process in biological system that is influenced and modulated by many factors including genetic variation. Expression Quantitative Trait Loci(e QTL) analysis provides a powerful way to ...Gene expression is a critical process in biological system that is influenced and modulated by many factors including genetic variation. Expression Quantitative Trait Loci(e QTL) analysis provides a powerful way to understand how genetic variants affect gene expression. For genome wide e QTL analysis, the number of genetic variants and that of genes are large and thus the search space is tremendous. Therefore, e QTL analysis brings about computational and statistical challenges. In this paper, we provide a comprehensive review of recent advances in methods for e QTL analysis in population-based studies. We first present traditional pairwise association methods, which are widely used in human genetics. To account for expression heterogeneity, we investigate the methods for correcting confounding factors. Next, we discuss newly developed statistical learning methods including Lasso-based models. In the conclusion, we provide an overview of future method development in analyzing e QTL associations. Although we focus on human genetics in this review, the methods are applicable to many other organisms.展开更多
文摘In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.
基金supported by the National Natural Science Foundation of China (61074131 and 91132722)the Doctoral Fund of the Ministry of Education of China (21101202110007)
文摘Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.
基金This work was supported in part by the National Natural Science Foundation of PRC (No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,PRC.
文摘LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.
基金Project (No.60872071) supported by the National Natural Science Foundation of China
文摘Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands.Band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover classification and higher level image analysis.In this paper,we propose a new band selection algorithm using sparse nonnegative matrix factorization (sparse NMF).Though acting as a clustering method for band selection,sparse NMF need not consider the distance metric between different spectral bands,which is often the key step for most common clustering-based band selection methods.By imposing sparsity on the coefficient matrix,the bands' clustering assignments can be easily indicated through the largest entry in each column of the matrix.Experimental results showed that sparse NMF provides considerable insight into the clustering-based band selection problem and the selected bands are good for land-cover classification.
文摘In this paper, we establish a class of sparse update algorithm based on matrix triangular factorizations for solving a system of sparse equations. The local Q-superlinear convergence of the algorithm is proved without introducing an m-step refactorization. We compare the numerical results of the new algorithm with those of the known algorithms, The comparison implies that the new algorithm is satisfactory.
基金This work was supported by National Institutes of Health Grants[grant number RO1 CA95747][grant number P01CA134294-01002].
文摘Factor analysis which studies correlation matrices is an effective means of data reduction whoseinference on the correlation matrix typically requires the number of random variables, p, to berelatively small and the sample size, n, to be approaching infinity. In contemporary data collection for biomedical studies, disease surveillance and genetics, p > n limits the use of existingfactor analysis methods to study the correlation matrix. The motivation for the research herecomes from studying the correlation matrix of log annual cancer mortality rate change for p = 59cancer types from 1969 to 2008 (n = 39) in the U.S.A. We formalise a test statistic to perform inference on the structure of the correlation matrix when p > n. We develop an approach based ongroup sequential theory to estimate the number of relevant factors to be extracted. To facilitateinterpretation of the extracted factors, we propose a BIC (Bayesian Information Criterion)-typecriterion to produce a sparse factor loading representation. The proposed methodology outperforms competing ad hoc methodologies in simulation analyses, and identifies three significant underlying factors responsible for the observed correlation between cancer mortality ratechanges.
基金supported in part by a Faculty Research Grant from the University of North Carolina at Charlotte
文摘Gene expression is a critical process in biological system that is influenced and modulated by many factors including genetic variation. Expression Quantitative Trait Loci(e QTL) analysis provides a powerful way to understand how genetic variants affect gene expression. For genome wide e QTL analysis, the number of genetic variants and that of genes are large and thus the search space is tremendous. Therefore, e QTL analysis brings about computational and statistical challenges. In this paper, we provide a comprehensive review of recent advances in methods for e QTL analysis in population-based studies. We first present traditional pairwise association methods, which are widely used in human genetics. To account for expression heterogeneity, we investigate the methods for correcting confounding factors. Next, we discuss newly developed statistical learning methods including Lasso-based models. In the conclusion, we provide an overview of future method development in analyzing e QTL associations. Although we focus on human genetics in this review, the methods are applicable to many other organisms.