期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Hierarchical Shape Pruning for 3D Sparse Convolution Networks
1
作者 Haiyan Long Chonghao Zhang +2 位作者 Xudong Qiu Hai Chen Gang Chen 《Computers, Materials & Continua》 2025年第8期2975-2988,共14页
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des... 3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems. 展开更多
关键词 Shape pruning model compressing 3D sparse convolution
在线阅读 下载PDF
Sparse convolutional model with semantic expression for waste electrical appliances recognition
2
作者 HAN HongGui LIU YiMing +1 位作者 LI FangYu DU YongPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第9期2881-2893,共13页
Deep neural networks play an important role in the recognition of waste electrical appliances. However, deep neural network components still lack reliability in decision-making features. To address this problem, a spa... Deep neural networks play an important role in the recognition of waste electrical appliances. However, deep neural network components still lack reliability in decision-making features. To address this problem, a sparse convolutional model with semantic expression(SCMSE) is proposed. First, a low-rank sparse semantic expression component, combining the benefits of residual networks and sparse representation, is adapted to enhance sparse feature extraction and semantic expression. Second, a reliable network architecture is obtained by iterating the optimal sparse solution, enhancing semantic expression. Finally, the results of visualization experiments on the waste electrical appliances dataset demonstrate that the proposed SCMSE can obtain excellent semantic performance. 展开更多
关键词 sparse convolutional model deep neural network semantic expression VISUALIZATION computer vision
原文传递
Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network 被引量:3
3
作者 Jingming Xia Yi Lu +1 位作者 Ling Tan Ping Jiang 《Computers, Materials & Continua》 SCIE EI 2021年第4期613-624,共12页
Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im... Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators. 展开更多
关键词 Image fusion infrared image visible light image non-downsampling shear wave transform improved PCNN convolutional sparse representation
在线阅读 下载PDF
Structured sparsity assisted online convolution sparse coding and its application on weak signature detection 被引量:1
4
作者 Huijie MA Shunming LI +2 位作者 Jiantao LU Zongzhen ZHANG Siqi GONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期266-276,共11页
Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level... Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance. 展开更多
关键词 Dictionary learning Online convolutional sparse coding(OCSC) Signal denoising Signal processing Weak signature detection
原文传递
A multi-source image fusion algorithm based on gradient regularized convolution sparse representation
5
作者 WANG Jian QIN Chunxia +2 位作者 ZHANG Xiufei YANG Ke REN Ping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期447-459,共13页
Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational com... Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational complexity and neglecting the local features of an image,resulting in limited image detail retention and a high registration misalignment sensitivity.In order to overcome these shortcomings and the noise existing in the image of the fusion process,this paper proposes a new signal decomposition model,namely the multi-source image fusion algorithm of the gradient regularization convolution SR(CSR).The main innovation of this work is using the sparse optimization function to perform two-scale decomposition of the source image to obtain high-frequency components and low-frequency components.The sparse coefficient is obtained by the gradient regularization CSR model,and the sparse coefficient is taken as the maximum value to get the optimal high frequency component of the fused image.The best low frequency component is obtained by using the fusion strategy of the extreme or the average value.The final fused image is obtained by adding two optimal components.Experimental results demonstrate that this method greatly improves the ability to maintain image details and reduces image registration sensitivity. 展开更多
关键词 gradient regularization convolution sparse representation(CSR) image fusion
在线阅读 下载PDF
Non-Line-of-Sight Multipath Classification Method for BDS Using Convolutional Sparse Autoencoder with LSTM
6
作者 Yahang Qin Zhenni Li +3 位作者 Shengli Xie Bo Li Ming Liu Victor Kuzin 《Tsinghua Science and Technology》 2025年第1期68-86,共19页
Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services by the BeiDou Navigation Satellite System(BDS).However,most existing approaches to this issue involve supervi... Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services by the BeiDou Navigation Satellite System(BDS).However,most existing approaches to this issue involve supervised machine learning(ML)methods,and it is difficult to move to unsupervised multipath signal recognition because of the limitations in signal labeling.Inspired by an autoencoder with powerful unsupervised feature extraction,we propose a new deep learning(DL)model for BDS signal recognition that places a long short-term memory(LSTM)module in series with a convolutional sparse autoencoder to create a new autoencoder structure.First,we propose to capture the temporal correlations in long-duration BeiDou satellite time-series signals by using the LSTM module to mine the temporal change patterns in the time series.Second,we develop a convolutional sparse autoencoder method that learns a compressed representation of the input data,which then enables downscaled and unsupervised feature extraction from long-duration BeiDou satellite series signals.Finally,we add an l_(1/2) regularizer to the objective function of our DL model to remove redundant neurons from the neural network while ensuring recognition accuracy.We tested our proposed approach on a real urban canyon dataset,and the results demonstrated that our algorithm could achieve better classification performance than two ML-based methods(e.g.,11%better than a support vector machine)and two existing DL-based methods(e.g.,7.26%better than convolutional neural networks). 展开更多
关键词 convolutional sparse autoencoder BeiDou Navigation Satellite System(BDS) long short-term memory(LSTM) multipath classification
原文传递
Simultaneous denoising and resolution enhancement of seismic data based on elastic convolution dictionary learning 被引量:1
7
作者 Nan-Ying Lan Fan-Chang Zhang +1 位作者 Kai-Heng Sang Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2127-2140,共14页
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem... Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods. 展开更多
关键词 Simultaneous denoising and resolution enhancement Elastic convolution dictionary learning Weighted convolutional sparse representation Matched filtering
原文传递
Multi-Layer Deep Sparse Representation for Biological Slice Image Inpainting
8
作者 Haitao Hu Hongmei Ma Shuli Mei 《Computers, Materials & Continua》 SCIE EI 2023年第9期3813-3832,共20页
Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontroll... Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images. 展开更多
关键词 Deep sparse representation image inpainting convolutional sparse modelling deep neural network
在线阅读 下载PDF
An Improved Pigeon-Inspired Optimization for Multi-focus Noisy Image Fusion
9
作者 Yingda Lyu Yunqi Zhang Haipeng Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1452-1462,共11页
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f... Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms. 展开更多
关键词 Improved pigeon-inspired optimization convolutional sparse representation Noisy image fusion Bionic algorithm
在线阅读 下载PDF
ARNet:Attribute artifact reduction for G-PCC compressed point clouds
10
作者 Junzhe Zhang Junteng Zhang +1 位作者 Dandan Ding Zhan Ma 《Computational Visual Media》 2025年第2期327-342,共16页
A learning-based adaptive loop filter is developed for the geometry-based point-cloud compression(G-PCC)standard to reduce attribute compression artifacts.The proposed method first generates multiple most probable sam... A learning-based adaptive loop filter is developed for the geometry-based point-cloud compression(G-PCC)standard to reduce attribute compression artifacts.The proposed method first generates multiple most probable sample offsets(MPSOs)as potential compression distortion approximations,and then linearly weights them for artifact mitigation.Therefore,we drive the filtered reconstruction as closely to the uncompressed PCA as possible.To this end,we devise an attribute artifact reduction network(ARNet)consisting of two consecutive processing phases:MPSOs derivation and MPSOs combination.The MPSOs derivation uses a two-stream network to model local neighborhood variations from direct spatial embedding and frequency-dependent embedding,where sparse convolutions are utilized to best aggregate information from sparsely and irregularly distributed points.The MPSOs combination is guided by the least-squares error metric to derive weighting coefficients on the fly to further capture the content dynamics of the input PCAs.ARNet is implemented as an in-loop filtering tool for GPCC,where the linear weighting coefficients are encapsulated into the bitstream with negligible bitrate overhead.The experimental results demonstrate significant improvements over the latest G-PCC both subjectively and objectively.For example,our method offers a 22.12%YUV Bjøntegaard delta rate(BDRate)reduction compared to G-PCC across various commonly used test point clouds.Compared with a recent study showing state-of-the-art performance,our work not only gains 13.23%YUV BD-Rate but also provides a 30×processing speedup. 展开更多
关键词 point cloud attribute compression sparse convolution sample offset linear coefficient
原文传递
A hybrid deep neural network based prediction of 300 MW coalfired boiler combustion operation condition 被引量:5
11
作者 HAN ZheZhe HUANG YiZhi +3 位作者 LI Jian ZHANG Biao HOSSAIN Md.Moinul XU ChuanLong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2300-2311,共12页
In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operatio... In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operation condition is crucial for an in-depth understanding of boiler performance and maintaining high combustion efficiency.However,it is difficult to establish an accurate prediction model based on traditional data-driven methods,which requires prior expert knowledge and a large number of labeled data.To overcome these limitations,a novel prediction method for the combustion operation condition based on flame imaging and a hybrid deep neural network is proposed.The proposed hybrid model is a combination of convolutional sparse autoencoder(CSAE)and least support vector machine(LSSVM),i.e.,CSAE-LSSVM,where the convolutional sparse autoencoder with deep architectures is utilized to extract the essential features of flame image,and then essential features are input into the least support vector machine for operation condition prediction.A comprehensive investigation of optimal hyper-parameter and dropout technique is carried out to improve the performance of the CSAE-LSSVM.The effectiveness of the proposed model is evaluated by 300 MW tangential coal-fired boiler flame images.The prediction accuracy of the proposed hybrid model reaches 98.06%,and its prediction time is 3.06 ms/image.It is observed that the proposed model could present a superior performance in comparison to other existing neural network models. 展开更多
关键词 coal-fired power plant combustion operation condition prediction flame image convolutional sparse autoencoder least support vector machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部