期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
一种融合AutoEncoder与CNN的混合算法用于图像特征提取 被引量:20
1
作者 刘兴旺 王江晴 徐科 《计算机应用研究》 CSCD 北大核心 2017年第12期3839-3843,3847,共6页
深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入... 深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入快速稀疏性控制,据此对图像训练出基本构件,并初始化CNN的卷积核;同时,给CNN加入了滤波机制,使输出特征保持稀疏性。实验结果表明,在Minist手写数字库和Yale人脸库的识别效果上,提出的特征提取方法均取得了较好的结果,实验进一步通过交叉验证T检验指出,引入滤波机制的特征提取模型优于没有采用滤波机制的模型。 展开更多
关键词 深度学习 卷积神经网络 自动编码器 滤波 稀疏控制
在线阅读 下载PDF
基于SAE的工程物探数据融合方法
2
作者 钟晗 刘金鹏 +2 位作者 王志豪 胡晓磊 赵璇 《河北水利电力学院学报》 2025年第3期37-40,52,共5页
单一物探方法在解释时不可避免地存在多解性,尤其是在复杂地质条件区。通常对同一测线不同方法的数据分别解释,再基于解释成果,综合分析,相互佐证,是一种简单的组合分析法。虽然考虑了不同方法的数据特征,但未能从数据层级挖掘其中更深... 单一物探方法在解释时不可避免地存在多解性,尤其是在复杂地质条件区。通常对同一测线不同方法的数据分别解释,再基于解释成果,综合分析,相互佐证,是一种简单的组合分析法。虽然考虑了不同方法的数据特征,但未能从数据层级挖掘其中更深层次的特征,解释成果是多个数据剖面,显示也不直观。为此,文中提出一种基于稀疏自编码器(Sparse Auto Encoders,SAE)的多方法工程物探数据融合方法。SAE是一种深度网络算法,通过不断学习,自动挖掘蕴含在数据中的深层次特征。融合数据兼备了多种物探数据中蕴含的物性参数特征,充分挖掘了数据中的地质信息,有效降低了解释的多解性,并能做到更直观地显示,可以更加全面地反映地质异常体的特征。 展开更多
关键词 稀疏自编码器 归一化处理 数据融合 综合解释
在线阅读 下载PDF
基于SSAE和改进的IndRNN电力物联网入侵检测方法研究
3
作者 闵永仓 王勇 《计算机应用与软件》 北大核心 2025年第10期358-366,共9页
随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大... 随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大量冗余特征问题,并通过改进的IndRNN捕获时序信息,引入分层注意力机制,对关键特征进行增强。实验结果表明,该模型在准确率和误报率达到99.36%和0.67%的同时还大大缩短了检测时间,是一种有效电力物联网入侵检测模型。 展开更多
关键词 堆栈稀疏自编码器 独立循环神经网络 入侵检测 电力物联网
在线阅读 下载PDF
基于KPCA-SAE-BP模型的有源干扰识别算法
4
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代防御技术》 北大核心 2025年第3期159-166,共8页
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高... 针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。 展开更多
关键词 有源干扰识别 核主成分分析 堆叠自编码器 反向传播神经网络 特征提取 特征降维
在线阅读 下载PDF
基于改进SAE和双向LSTM的滚动轴承RUL预测方法 被引量:27
5
作者 康守强 周月 +2 位作者 王玉静 谢金宝 MIKULOVICH Vladimir Ivanovich 《自动化学报》 EI CAS CSCD 北大核心 2022年第9期2327-2336,共10页
针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL... 针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差. 展开更多
关键词 滚动轴承 稀疏自动编码器 无监督特征提取 双向长短时记忆网络 剩余使用寿命预测
在线阅读 下载PDF
基于Tri-training-SSAE半监督学习算法的电力系统暂态稳定评估 被引量:8
6
作者 卫志农 李超凡 +4 位作者 丁爱飞 孙国强 黄蔓云 臧海祥 方熙程 《电力自动化设备》 EI CSCD 北大核心 2023年第7期110-116,共7页
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自... 基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。 展开更多
关键词 暂态稳定评估 机器学习 半监督学习 三体训练算法 堆叠稀疏自动编码器
在线阅读 下载PDF
基于ASAE深度学习预测海洋气象对船舶航速的影响 被引量:9
7
作者 王胜正 申心泉 +2 位作者 赵建森 冀宝仙 杨平安 《交通运输工程学报》 EI CSCD 北大核心 2018年第2期139-147,共9页
为了有效地预测海洋气象对船舶航速的影响,在稀疏自编码(SAE)网络模型的基础上提出交替稀疏自编码(ASAE)网络模型;构建了海洋气象对船舶航速影响的预测框架,利用关联规则方法对航行数据进行特征选择,挖掘了船速影响因素及其隐含关系;整... 为了有效地预测海洋气象对船舶航速的影响,在稀疏自编码(SAE)网络模型的基础上提出交替稀疏自编码(ASAE)网络模型;构建了海洋气象对船舶航速影响的预测框架,利用关联规则方法对航行数据进行特征选择,挖掘了船速影响因素及其隐含关系;整合了中国远洋海运集团有限公司提供的船舶航行数据以及美国国家海洋和大气管理局提供的气象数据,用训练样本对ASAE网络模型进行训练,用测试样本对ASAE网络模型进行验证,并与支持向量回归(SVR)模型、反向传播神经网络(BPNN)模型、深度信念网络(DBN)模型及SAE网络模型的预测结果进行了对比。研究结果表明:ASAE网络模型的训练时间和海洋气象对船舶航速影响预测值的均方根误差分别为8.2s和0.287 3kn,与SVR模型、BPNN模型、DBN模型及SAE网络模型相比,训练时间分别缩短了1 683.1、66.9、2.0、1.5s,预测准确度分别提高了0.045 5、0.296 9、0.153 4、0.178 6kn;ASAE网络模型的预测结果更符合实际海况,可动态掌握海洋气象对船舶航速的影响;通过预测的航速影响值来推算实际航速可为气象导航优化船舶运输过程起到辅助作用,在进行航线规划、航速推荐等航行优化策略时能准确考虑海洋气象所产生的复杂影响,从而改善船舶运营能效指标,实现节能、低碳、绿色航行的宗旨。 展开更多
关键词 交通信息工程 智能航行 船舶航速 深度学习 交替稀疏自编码 关联规则 气象因子
原文传递
融合候选区域提取与SSAE深度特征学习的心脏MR图像左心室检测 被引量:4
8
作者 王旭初 牛彦敏 +2 位作者 赵广军 谭立文 张绍祥 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第3期424-435,共12页
左心室检测在计算机辅助心脏MR图像诊断方面具有重要价值,针对由于成像质量、部分容积效应、目标复杂多变等因素影响,导致左心室自动检测准确度较低的问题,提出一种融合候选区域提取与栈式稀疏自编码器(SSAE)深度特征学习的心脏MR图像... 左心室检测在计算机辅助心脏MR图像诊断方面具有重要价值,针对由于成像质量、部分容积效应、目标复杂多变等因素影响,导致左心室自动检测准确度较低的问题,提出一种融合候选区域提取与栈式稀疏自编码器(SSAE)深度特征学习的心脏MR图像左心室检测方法.在候选区域提取阶段,先用超像素算法产生初始区域,然后对SSAE学习到的深度特征采用层次聚类算法生成候选区域;在检测阶段,先使用SSAE提取候选区域的深度特征,然后训练SVM分类器对候选区域进行分类,并使用难分负样本挖掘算法对模型进行调节.对心脏图谱数据集左心室目标检测的实验结果表明,相对于手工特征及基于候选区域等方法,该方法取得了有竞争力的检测精度. 展开更多
关键词 栈式稀疏自编码器 左心室目标检测 深度特征学习 心脏MR图像 SVM分类器
在线阅读 下载PDF
一种基于SAE和BP网络相结合的人脸识别模型 被引量:3
9
作者 李森林 石元泉 黄隆华 《怀化学院学报》 2017年第5期78-82,共5页
基于浅层BP网络的模式识别在诸多领域有着广泛的应用,但对于稀疏高维度的数据,在网络模型训练时计算量大、参数繁多、训练慢、准确率低.提出了一种基于稀疏自动编码器(Sparse auto-Encoder,SAE)和浅层BP网络相结合的人脸识别模型.在深度... 基于浅层BP网络的模式识别在诸多领域有着广泛的应用,但对于稀疏高维度的数据,在网络模型训练时计算量大、参数繁多、训练慢、准确率低.提出了一种基于稀疏自动编码器(Sparse auto-Encoder,SAE)和浅层BP网络相结合的人脸识别模型.在深度SAE模型中,通过设置隐藏节点数少于输入输出节点数方法,自动学习样本的多种特征表示,来实现数据的降维和去稀疏性,将该方法产生的特征表示作为输入新样本数据,用于BP网络模型进行图像识别.通过人脸识别实验表明,第一通过SAE模型得到的特征表示进行人脸识别是可行的;第二SAE模型获得的多种表示分别进行人脸识别,并非第j层表示比第i层表示(j>i)效果一定好;第三该方法比单纯浅层BP网络进行人脸识别在效果上有一定程度的改善和提高. 展开更多
关键词 稀疏自动编码器 神经网络 人脸识别 高维度数据 维度约减
在线阅读 下载PDF
基于改进SAE网络的自然图像分类 被引量:2
10
作者 王恬 仇春春 +1 位作者 俞婧 许金鑫 《信息技术》 2016年第8期1-4,8,共5页
针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SA... 针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SAE网络的第一层。在提取初步特征的同时降低输入的维度,解决了网络参数过多,训练过程慢的问题。同时对改进的SAE网络进行微调,缩减训练时间,并提取更有利于分类的图像高层特征。实验结果表明,改进SAE网络对于自然图像的分类具有更好的普适性,可以有效地提高分类准确度,并加快网络训练速度。 展开更多
关键词 图像分类 改进sae网络 卷积自动编码器 微调 最大池化
在线阅读 下载PDF
基于迁移学习SAE的无人机目标识别算法研究 被引量:7
11
作者 谢冰 段哲民 +1 位作者 郑宾 殷云华 《红外与激光工程》 EI CSCD 北大核心 2018年第6期214-220,共7页
无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进... 无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进行识别与分类。针对这一问题,提出基于迁移学习卷积稀疏自动编码器(Sparse Auto-Encoder,SAE)实现对航拍多帧图像中敌方目标对象的识别与分类。算法首先借助SAE对源领域数据集中大量无标记样本进行无监督学习,获取其局部特征;然后,采用池化层卷积神经网络(CNN)算法提取目标图像全局特征;最后,送入Softmax回归模型实现目标对象的识别与分类。实验结果表明:与传统非迁移学习的SAE算法及基于底层视觉特征学习的识别算法相比,该算法具有更高的准确性。 展开更多
关键词 无人机自主导航 目标识别分类 稀疏自动编码器 卷积神经网络 迁移学习
原文传递
基于SAE与底层视觉特征融合的无人机目标识别算法 被引量:2
12
作者 谢冰 段哲民 《红外与激光工程》 EI CSCD 北大核心 2018年第A01期197-205,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对... 无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto—Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。 展开更多
关键词 无人机目标对象 目标识别 sparse autoencoder 底层视觉描述子 PCA
原文传递
SSAE和IGWO-SVM的滚动轴承故障诊断 被引量:19
13
作者 袁宪锋 颜子琛 +2 位作者 周风余 宋勇 缪昭明 《振动.测试与诊断》 EI CSCD 北大核心 2020年第2期405-413,424,共10页
针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智... 针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。 展开更多
关键词 滚动轴承故障诊断 栈式稀疏自编码网络 特征提取 灰狼算法 支持向量机
在线阅读 下载PDF
基于VMD-样本熵和SSAE的齿轮故障诊断 被引量:11
14
作者 徐飞 蒋占四 黄惠中 《组合机床与自动化加工技术》 北大核心 2020年第8期39-42,47,共5页
针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由... 针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由一维转化为二维信号,对二维信号每一行进行VMD分解得到若干有限带宽的内禀模态分量(Bandwidth limited intrinsic mode function,BLIMF),比较各模态分量的样本熵,选择样本熵最大的模态分量构成特征向量。将特征向量作为SSAE的输入进行模式识别,最终实现齿轮故障的分类。通过实例验证及对比实验,结果表明该方法具有较高的分类精度和诊断效率。 展开更多
关键词 变分模态分解 样本熵 堆叠稀疏自编码 齿轮故障
在线阅读 下载PDF
面向飞参数据异常检测的SAE优化方法比较 被引量:2
15
作者 杜辰飞 高峰 +2 位作者 袁涛 孙文柱 曲建岭 《信息技术》 2015年第12期181-185,共5页
首先阐述了稀疏自动编码器(SAE)及随机梯度下降法、共轭梯度法和有限内存拟牛顿法等三种优化方法的基本原理,然后选取了某型飞机200架次平稳飞行状态下的4类飞参数据,并根据飞参数据异常检测的实际需求通过实验得到了最佳算法参数和结... 首先阐述了稀疏自动编码器(SAE)及随机梯度下降法、共轭梯度法和有限内存拟牛顿法等三种优化方法的基本原理,然后选取了某型飞机200架次平稳飞行状态下的4类飞参数据,并根据飞参数据异常检测的实际需求通过实验得到了最佳算法参数和结构参数的配置方式。最后比较了三种优化方法处理不同数据集的重构误差、收敛速度以及样本集受到噪声污染时的重构准确率,从而找出了最适用于飞参数据异常检测的方法,为今后研究提供参考。 展开更多
关键词 飞参数据 异常检测 稀疏自动编码器 优化方法
在线阅读 下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:6
16
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(Ssae) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
在线阅读 下载PDF
基于SA-SAE的配电网故障分类方法 被引量:2
17
作者 朱方博 张俊林 +3 位作者 王瑞驰 汤智谦 倪良华 吕干云 《电气自动化》 2023年第2期100-102,共3页
准确识别故障类型是配电网故障处理的首要任务。基于特征融合和自注意力机制,提出了一种具有强抗噪声能力和高泛化水平的配电网故障分类方法。利用S变换构造故障信号的时频矩阵,对其进行奇异值分解提取频域特征量,与表征波形形态特征相... 准确识别故障类型是配电网故障处理的首要任务。基于特征融合和自注意力机制,提出了一种具有强抗噪声能力和高泛化水平的配电网故障分类方法。利用S变换构造故障信号的时频矩阵,对其进行奇异值分解提取频域特征量,与表征波形形态特征相关性的时域特征量相融合组成时频域特征量。将特征量输入稀疏自动编码器,引入自注意力机制提高特征提取能力,最终完成故障分类识别。仿真结果表明,所提方法在不同故障位置、故障相角和过渡电阻条件下可实现对配电网故障类型的较高正确率识别,且在噪声干扰、中性点运行方式发生变化情况下具有良好的应用适应性。 展开更多
关键词 配电网 故障分类 S变换 奇异值分解 自注意力机制 稀疏自动编码器
在线阅读 下载PDF
基于SAE与底层视觉特征融合的无人机目标识别算法(英文) 被引量:1
18
作者 谢冰 段哲民 《红外与激光工程》 EI CSCD 北大核心 2018年第S1期205-213,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人... 无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto-Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。 展开更多
关键词 无人机目标对象 目标识别 sparse auto-encoder 底层视觉描述子 PCA
原文传递
一种基于SAE-RF算法的配电变压器故障诊断方法 被引量:9
19
作者 陈锦锋 张军财 +3 位作者 卢思佳 高伟 范贤盛 陈致远 《电工电气》 2021年第2期17-23,共7页
为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE... 为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE模型中的每一个自编码器进行逐层无监督训练,通过贝叶斯优化算法自动选择模型的最优参数;通过有标签数据对模型参数进行有监督细调,挖掘出能够代表各种故障本质属性的特征量;创建一个RF分类器对故障类型进行辨识,调参过程同样实现参数的自动寻优。试验结果表明,所提方法对配电变压器故障诊断准确率达到96.67%,显著优于单独使用SAE和RF的分类结果。 展开更多
关键词 配电变压器 故障诊断 堆栈自编码器 随机森林 贝叶斯优化
在线阅读 下载PDF
基于SAE和GNDO-SVM的脑电信号情绪识别 被引量:1
20
作者 陈晨 任南 《计算机系统应用》 2023年第10期284-292,共9页
情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信... 情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别. 展开更多
关键词 脑电信号 情绪识别 深度特征 堆叠自动编码器 广义正态分布优化 支持向量机
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部