期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Renovated Random Attribute-Based Fennec Fox Optimized Deep Learning Framework in Low-Rate DoS Attack Detection in IoT
1
作者 Prasanalakshmi Balaji Sangita Babu +4 位作者 Maode Ma Zhaoxi Fang Syarifah Bahiyah Rahayu Mariyam Aysha Bivi Mahaveerakannan Renganathan 《Computers, Materials & Continua》 2025年第9期5831-5858,共28页
The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptibl... The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptible to security threats.One significant risk to cloud networks is Distributed Denial-of-Service(DoS)attacks,where attackers aim to overcome a target system with excessive data and requests.Among these,low-rate DoS(LR-DoS)attacks present a particular challenge to detection.By sending bursts of attacks at irregular intervals,LR-DoS significantly degrades the targeted system’s Quality of Service(QoS).The low-rate nature of these attacks confuses their detection,as they frequently trigger congestion control mechanisms,leading to significant instability in IoT systems.Therefore,to detect the LR-DoS attack,an innovative deep-learning model has been developed for this research work.The standard dataset is utilized to collect the required data.Further,the deep feature extraction process is executed using the Residual Autoencoder with Sparse Attention(ResAE-SA),which helps derive the significant feature required for detection.Ultimately,the Adaptive Dense Recurrent Neural Network(ADRNN)is implemented to detect LR-DoS effectively.To enhance the detection process,the parameters present in the ADRNN are optimized using the Renovated Random Attribute-based Fennec Fox Optimization(RRA-FFA).The proposed optimization reduces the False Discovery Rate and False Positive Rate,maximizing the Matthews Correlation Coefficient from 23,70.8,76.2,84.28 in Dataset 1 and 70.28,73.8,74.1,82.6 in Dataset 2 on EPC-ADRNN,DPO-ADRNN,GTO-ADRNN,FFA-ADRNN respectively to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model.At batch size 4,the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%to GTO-ADRNN,11.6%to EFC-ADRNN,10.9%to DPO-ADRNN,and 4%to FFA-ADRNN for Dataset 1.The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%,9.09%,11.6%,and 10.9%over FFCNN,SVM,RNN,and DRNN,using Dataset 2,showing a better improvement in accuracy with that of the proposed RRA-FFA-ADRNN model with 95.7%using Dataset 1 and 94.1%with Dataset 2,which is better than the existing baseline models. 展开更多
关键词 Detecting low-rate DoS attacks adaptive dense recurrent neural network residual autoencoder with sparse attention renovated random attribute-based fennec fox optimization
在线阅读 下载PDF
一种轻量化三维人体姿态估计算法 被引量:1
2
作者 汪洋继鸿 张路 +1 位作者 于越 王健 《通信与信息技术》 2024年第2期32-35,41,共5页
针对三维人体姿态估计实际应用场景需求,提出一种基于空洞卷积ResNet模块和稀疏自注意力(Sparse Attention,SA)的轻量化三维人体姿态估计模型DS-Net(Dilated Sparse Attention Network)。首先,以单目、单阶段、多个三维人的回归网络(Mon... 针对三维人体姿态估计实际应用场景需求,提出一种基于空洞卷积ResNet模块和稀疏自注意力(Sparse Attention,SA)的轻量化三维人体姿态估计模型DS-Net(Dilated Sparse Attention Network)。首先,以单目、单阶段、多个三维人的回归网络(Monocular,One-stage,Regression of Multiple 3D People,ROMP)为基础姿态估计模型,并替换支路中基础ResNet模块的卷积为空洞卷积,在不降低精度的前提下减少模型参数量;其次,在支路中嵌入Sparse Attention,加强上下文理解能力以提高精度;最后,经过7个数据集训练和3DPW数据集测试,验证模型可行性。经实验验证,提出的DS-Net总参数量减少53.8%;在三维人体姿态估计任务中与ROMP相比,MPJPE和PA-MPJPE分别降低1.8%和2.9%,满足姿态估计实际应用场景需求。 展开更多
关键词 姿态估计 空洞卷积 sparse attention 轻量化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部