期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
1
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization algorithm Convolutional Neural Network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm
3
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +1 位作者 Amel Ali Alhussan Marwa M.Eid 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2117-2132,共16页
The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in ma... The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes. 展开更多
关键词 Stochastic fractal search dipper throated optimization energy consumption long short-term memory prediction models
在线阅读 下载PDF
Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model
4
作者 Jiachang Liu Zhengwei Huang +2 位作者 Junfeng Xiang Lu Liu Manlin Hu 《Energy Engineering》 EI 2024年第11期3461-3486,共26页
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi... To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions. 展开更多
关键词 short-term load forecasting seasonal characteristics refined composite multiscale fuzzy entropy(RCMFE) max-relevance and min-redundancy(mRMR) bidirectional long short-term memory(BiLSTM) hyperparameter search
在线阅读 下载PDF
Short-Term Wind Power Prediction Based on Optimized VMD and LSTM
5
作者 Xinjian Li Yu Zhang +1 位作者 Zewen Wang Zhenyun Song 《Energy Engineering》 2025年第11期4603-4619,共17页
Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliabilit... Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliability.For this purpose,a hybrid prediction model(VMD-LSTM-Attention)has been proposed,which integrates the variational modal decomposition(VMD),the long short-term memory(LSTM),and the attention mechanism(Attention),and has been optimized by improved dung beetle optimization algorithm(IDBO).Firstly,the algorithm's performance has been significantly enhanced through the implementation of three key strategies,namely the elite group strategy of the Logistic-Tent map,the nonlinear adjustment factor,and the adaptive T-distribution disturbance mechanism.Subsequently,IDBO has been applied to optimize the important parameters of VMD(decomposition layers and penalty factors)to ensure the best decomposition signal is obtained;Furthermore,the IDBO has been deployed to optimize the three key hyper-parameters of the LSTM,thereby improving its learning capability.Finally,an Attention mechanism has been incorporated to adaptively weight temporal features,thus increasing the model's ability to focus on key information.Comprehensive simulation experiments have demonstrated that the proposed model achieves higher prediction accuracy compared with VMD-LSTM,VMD-LSTM-Attention,and traditional prediction methods,and quantitative indexes verify the efectiveness of the algorithmic improvement as well as the excellence and precision of the model in wind power prediction. 展开更多
关键词 Variational modal decomposition attention mechanism dung beetle optimization algorithm long short-term memory network
在线阅读 下载PDF
PRI modulation recognition and sequence search under small sample prerequisite 被引量:2
6
作者 ZHANG Chunjie LIU Yuchen SI Weijian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期706-713,共8页
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada... Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite. 展开更多
关键词 inter-pulse slide pulse repetition interval(PRI)modulation type bi-directional long short-term memory(BiLSTM)network sequence search
在线阅读 下载PDF
An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction 被引量:1
7
作者 Xiang Wang Liangsa Wang +1 位作者 Han Li Yibin Guo 《Computers, Materials & Continua》 SCIE EI 2023年第12期2935-2969,共35页
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo... The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems. 展开更多
关键词 Whale optimization algorithm chaos mechanism opposition-based learning long short-term memory realized volatility
在线阅读 下载PDF
基于延拓补偿策略的气体传感器端点效应诊断
8
作者 朱健松 邢博轩 +2 位作者 孟凡利 王浩 唐坤 《沈阳理工大学学报》 2026年第1期36-43,共8页
针对经验模态分解(empirical mode decomposition,EMD)处理非平稳信号时因端点效应造成分解结果失真的问题,提出一种基于麻雀搜索算法(sparrow search algorithm,SSA)与长短时记忆(long short-term memory,LSTM)网络的耦合模型,突破传... 针对经验模态分解(empirical mode decomposition,EMD)处理非平稳信号时因端点效应造成分解结果失真的问题,提出一种基于麻雀搜索算法(sparrow search algorithm,SSA)与长短时记忆(long short-term memory,LSTM)网络的耦合模型,突破传统梯度下降算法易陷入局部最优的局限,显著提升时序预测精度。首先将气体响应信号预处理为周期特征变量;然后采用双向周期延拓策略,通过LSTM-SSA深度训练,生成首尾各延伸一个周期的预测序列;最后利用双向性预测序列构建复合信号,并对其进行EMD分解。以丙酮和甲苯信号为例的实验结果表明,经LSTM-SSA预测后再进行EMD分解时端点效应引起的能量误差分别降低了74.966%和23.368%、正交性系数分别提升了51.444%和34.990%,有效抑制了端点处模态分量的幅值失真,提升了EMD的可靠性,为气体传感信号的特征提取与工业安全监测提供了新思路。 展开更多
关键词 经验模态分解 端点效应 麻雀搜索算法 长短时记忆网络 周期延拓
在线阅读 下载PDF
Research on Welding Quality Traceability Model of Offshore Platform Block Construction Process
9
作者 Jinghua Li Wenhao Yin +1 位作者 Boxin Yang Qinghua Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期699-730,共32页
Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platf... Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platform and the process level of the offshore industry.Currently,qualitymanagement remains in the era of primary information,and there is a lack of effective tracking and recording of welding quality data.When welding defects are encountered,it is difficult to rapidly and accurately determine the root cause of the problem from various complexities and scattered quality data.In this paper,a composite welding quality traceability model for offshore platform block construction process is proposed,it contains the quality early-warning method based on long short-term memory and quality data backtracking query optimization algorithm.By fulfilling the training of the early-warning model and the implementation of the query optimization algorithm,the quality traceability model has the ability to assist enterprises in realizing the rapid identification and positioning of quality problems.Furthermore,the model and the quality traceability algorithm are checked by cases in actual working conditions.Verification analyses suggest that the proposed early-warningmodel for welding quality and the algorithmfor optimizing backtracking requests are effective and can be applied to the actual construction process. 展开更多
关键词 Quality traceability model block construction process welding quality management long short-term memory quality data backtracking query optimization algorithm
在线阅读 下载PDF
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
10
作者 Wu Jin Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
在线阅读 下载PDF
Multipath Selection Algorithm Based on Dynamic Flow Prediction
11
作者 Jingwen Wang Guolong Yu Xin Cui 《Journal of Computer and Communications》 2024年第7期94-104,共11页
Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Define... Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Defined Network (SDN) to dynamically predict the traffic and comprehensively consider the current and predicted load of the network in order to select the optimal forwarding path and balance the network load. Experiments have demonstrated that the algorithm achieves significant improvement in both system throughput and average packet loss rate for the purpose of improving network quality of service. 展开更多
关键词 Data Center Network Software Defined Network Load Balance long short-term memory Quantum Annealing algorithms
在线阅读 下载PDF
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA 被引量:4
12
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
在线阅读 下载PDF
基于SSA-LSTM-Attention的日光温室环境预测模型 被引量:3
13
作者 孟繁佳 许瑞峰 +3 位作者 赵维娟 宋文臻 高艺璇 李莉 《农业工程学报》 北大核心 2025年第11期256-263,共8页
建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechani... 建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechanism)的日光温室环境预测模型。首先,通过温室物联网数据采集系统获取温室内外环境数据;其次,使用皮尔逊相关性分析法筛选出强相关性因子;最后,构建环境特征时间序列矩阵输入模型进行温室环境预测。对日光温室的室内温度、室内湿度、光照强度和土壤湿度4种环境因子的预测,SSA-LSTM-Attention模型的平均拟合指数达到了97.9%。相较于反向传播神经网络(back propagation neural network,BP)、门控循环单元(gate recurrent unit,GRU)、长短期记忆神经网络(long short term memory,LSTM)和LSTM-Attention(long short-term memory-attention mechanism)模型,分别提高8.1、4.1、3.5、3.0个百分点;平均绝对百分比误差为2.6%,分别降低6.5、3.2、2.8、2.5个百分点。试验结果表明,通过利用SSA自动优化LSTM-Attention模型的超参数,提高了模型预测精度,为日光温室环境超前调控提供了有效的数据支持。 展开更多
关键词 日光温室 麻雀搜索算法 长短期记忆网络 注意力机制 环境预测模型
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
14
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
原文传递
Small Cell Sleeping Strategy with Traffic-Aware and High-Low Frequency Resource Allocation
15
作者 Qu Yinxiang Quan Shuo +3 位作者 Wang Jingya Xie Shiyun Ma Tengteng Wang Xuliang 《China Communications》 2025年第5期92-107,共16页
With the increase of wireless devices and new applications,highly dense small cell base stations(SBS)have become the main means to overcome the speed bottleneck of the radio access network(RAN).However,the highly-dens... With the increase of wireless devices and new applications,highly dense small cell base stations(SBS)have become the main means to overcome the speed bottleneck of the radio access network(RAN).However,the highly-dense deployment of SBSs greatly increases the cost of network operation and maintenance.In this paper,a base station sleep strategy combining traffic aware and high-low frequency resource allocation is proposed.To reduce the service level agreement(SLA)default caused by base station sleep,Long Short-Term Memory(LSTM)algorithm is introduced to predict the traffic flow,based on the predict result,the SBSs sleep and frequency resource allocation are introduced to increase the energy efficiency of the network.Moreover,this paper improves the decision-making efficiency by introducing Kuhn Munkres algorithm(KM)and genetic algorithm(GA).Simulation results show that the proposed strategy can greatly reduce the energy consumption of small cells and the occurrence of SLA default rate. 展开更多
关键词 genetic algorithm(GA) kuhn munkres(KM) long short-term memory(LSTM) resource allocation sleeping strategy small cell traffic-aware
在线阅读 下载PDF
基于ISSA—LSTM的菇房温湿度预测模型研究 被引量:2
16
作者 张铭志 柳平增 +2 位作者 张艳 潘纪港 陈超 《中国农机化学报》 北大核心 2025年第2期90-97,共8页
为提升双孢蘑菇品质与产量,实现菇房整体环境提前调控,精准预测菇房环境中的温湿度数据是关键。但传统预测模型很多参数都需要人工手动调节,例如隐藏层神经元节点数、学习率、迭代次数等,这一系列参数的选择都直接影响预测性能的优劣。... 为提升双孢蘑菇品质与产量,实现菇房整体环境提前调控,精准预测菇房环境中的温湿度数据是关键。但传统预测模型很多参数都需要人工手动调节,例如隐藏层神经元节点数、学习率、迭代次数等,这一系列参数的选择都直接影响预测性能的优劣。针对以上问题,提出一种基于改进麻雀搜索算法ISSA优化的长短期记忆网络LSTM菇房环境预测模型,实现对菇房内的温湿度环境的精准预测。验证结果表明:该预测方法对温度的预测指标均方根误差RSME、平均绝对误差MAE分别为0.493、0.263,模型拟合优度R2为96.2%;对湿度的预测指标均方根误差RSME、平均绝对误差MAE分别为1.105、1.058,模型拟合优度R2为95.6%,由此可见,在菇房温湿度预测准确率方面,所提方法优于SSA—LSTM模型,为打造最适宜的菇房温湿度环境提供高时效的决策数据。 展开更多
关键词 双孢蘑菇菇房 物联网 麻雀搜索算法 长短期记忆网络
在线阅读 下载PDF
基于SSA-CNN-LSTM的蛋鸡舍二氧化碳排放量预测研究 被引量:2
17
作者 王聆汐 李丽华 +4 位作者 贾宇琛 于尧 李民 谢紫开 付安楠 《中国家禽》 北大核心 2025年第6期88-98,共11页
为准确预测蛋鸡舍二氧化碳排放量,评估和控制集约化养殖对环境的影响,以制定有效的减排措施,研究提出一种基于麻雀搜索算法(SSA)、卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的混合神经网络模型。该模型以华北地区典型的叠层笼养鸡... 为准确预测蛋鸡舍二氧化碳排放量,评估和控制集约化养殖对环境的影响,以制定有效的减排措施,研究提出一种基于麻雀搜索算法(SSA)、卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的混合神经网络模型。该模型以华北地区典型的叠层笼养鸡舍为研究对象,综合考虑二氧化碳、通风量、大气压、温度和湿度等环境因素。研究通过预处理环境数据并计算每小时二氧化碳排放量,构建相应的数据集。利用SSA和CNN对LSTM模型进行特征提取和超参数优化,有效提升模型性能。结果显示:SSA-CNN-LSTM模型的平均绝对误差(MAE)为0.15 kg,R²值稳定在0.95以上,并预测出2024年某蛋鸡舍的二氧化碳排放量,MAE为0.2 kg。研究表明,SSA-CNN-LSTM模型能够较为准确地预测蛋鸡舍二氧化碳排放量,为蛋鸡养殖系统碳排放核算提供更为简单有效的预测方法。 展开更多
关键词 蛋鸡舍 二氧化碳排放量 卷积神经网络 麻雀搜索算法 长短期记忆神经网络
原文传递
基于改进CEEMD算法与优化LSTM的光伏功率预测
18
作者 许爱华 贾皓天 +1 位作者 王智煜 袁文俊 《吉林大学学报(信息科学版)》 2025年第2期451-460,共10页
为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memor... 为了更好地利用太阳能,准确预测光伏发电功率,提高光伏功率预测的精度,提出了一种基于因素相关互补集合经验模态分解算法(CEEMD:Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络(LSTM:Long Short-Term Memory network)结合的光伏功率预测方法。首先,使用CEEMD算法分解光伏功率时序,建立分解功率分量与环境因素的Pearson相关系数矩阵,每个分解功率分量选取3个关键因素作为后续预测的输入;其次,利用改进麻雀群搜索算法(ISSA:Improved Sparrow Search Algorithm)优化LSTM网络,建立ISSA-LSTM算法各光伏功率分量预测模型;然后,将各个分解模态的预测结果叠加重构;最后,结合南方某地光伏电站发电功率实测数据对所提方法进行验证,结果验证了所提方法的有效性与优越性。 展开更多
关键词 光伏功率预测 CEEMD算法 Pearson相关矩阵 ISSA-LSTM算法
在线阅读 下载PDF
基于多头LSTM模型的南疆枣树土壤墒情预测 被引量:1
19
作者 杨轶航 吕德生 +4 位作者 刘宁宁 王振华 李淼 张金珠 王东旺 《水资源与水工程学报》 北大核心 2025年第2期207-217,共11页
在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、... 在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、气象数据以及灌溉水量等小时级数据集,采用长短期记忆神经网络(LSTM)模型对各土层土壤墒情进行多步预测。引入了由4个单一LSTM模型组成的多头LSTM模型,旨在扩大预测范围并提高预测精度,并采用k折交叉验证结合麻雀搜索算法(SSA)对每个单一LSTM模型进行超参数调优,以提升模型的泛化能力和准确性。对各单一模型的输出进行加权平均,获得最终的预测结果。结果表明:在4个土层墒情均值数据集上,多头LSTM模型对未来1、12、24、48 h的土壤墒情预测的决定系数(R^(2))分别提升至0.951、0.932、0.870、0.815;多头LSTM模型可有效提升枣树土壤墒情的中长期预测精度,特别是在24和48 h的预测中,改进效果尤为明显,这为枣树的精细化灌溉管理提供了有力支持,可帮助农民更有效地利用水资源,减少浪费。 展开更多
关键词 土壤墒情预测 多头LSTM 麻雀搜索算法 k折交叉验证 南疆滴灌骏枣
在线阅读 下载PDF
基于ISSA-BiLSTM的多端柔性直流输电线路保护方案 被引量:1
20
作者 李正 陈堂贤 +2 位作者 张赟宁 刘双洋 孙培胜 《电测与仪表》 北大核心 2025年第4期97-104,共8页
针对多端柔性直流输电线路保护的耐受过渡电阻能力差、识别准确率低的问题,提出了一种改进麻雀搜索算法(improved sparrow search algorithm, ISSA)与双向长短时记忆网络(bidirectional long short-term memory network, BiLSTM)结合的... 针对多端柔性直流输电线路保护的耐受过渡电阻能力差、识别准确率低的问题,提出了一种改进麻雀搜索算法(improved sparrow search algorithm, ISSA)与双向长短时记忆网络(bidirectional long short-term memory network, BiLSTM)结合的诊断模型。基于小波变换技术提取输电线路故障的特征作为模型输入量对模型进行训练;利用Sine混沌映射、学习粒子群算法策略、引入高斯扰动项对原始麻雀搜索算法进行改进,利用ISSA对BiLSTM目标超参数进行寻优,使故障诊断精度达到最优。最后基于PSCAD/EMTDC仿真平台搭建了四端柔性直流输电系统模型,验证表明,其故障识别准确率高、耐过渡电阻能力强,满足可靠性与速动性的要求。 展开更多
关键词 多端柔性直流电网 小波变换 麻雀搜索算法 双向长短时记忆网络 故障诊断
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部