期刊文献+
共找到242篇文章
< 1 2 13 >
每页显示 20 50 100
Predicting floor heave risk in road tunnels with machine learning
1
作者 Xuefeng Ou Ye Zhou +5 位作者 Yong Kong Tongming Qu Shiquan Xu Wei Liao Cong Tang Xuemin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6428-6438,共11页
Floor heave is a common defect in mountainous tunnels.It is critical but challenging to predict the risk of floor heave,as traditional methods often fail to characterize this phenomenon effectively.This study proposes... Floor heave is a common defect in mountainous tunnels.It is critical but challenging to predict the risk of floor heave,as traditional methods often fail to characterize this phenomenon effectively.This study proposes a data-driven approach utilizing a support vector machine(SVM)optimized by the sparrow search algorithm(SSA)to address the issue.The model was developed and validated using a dataset collected from 100 tunnels.Shapley value analysis was conducted to identify the key features influencing floor heave defects.Moreover,a committee-based uncertainty quantification method is presented to evaluate the reliability of each prediction.The results show that:(1)Data feature engineering and SSA play pivotal roles in expediting the convergence of the SVM model.(2)Groundwater and high in situ stress are key factors contributing to tunnel floor heave.(3)In comparison to backpropagation(BP)neural networks,the SSA-SVM demonstrates superior robustness in handling imperfect and limited data.(4)The committee-based uncertainty quantification method is proven effective to evaluate the trustworthiness of each prediction.This data-driven surrogate model offers an effective strategy for understanding the factors that impact tunnel floor defects and accurately predicting tunnel floor heave deformation. 展开更多
关键词 Floor heave support vector machine(SVM) sparrow search algorithm(SSA) Shapley value Uncertainty quantification
在线阅读 下载PDF
基于RF-ISSA-SVM和SHAP的疾病诱因可解释性模型——以肥胖症为例
2
作者 马捷 孙文晶 郝志远 《数据分析与知识发现》 北大核心 2025年第9期74-87,共14页
【目的】构建具有可解释性的高质量疾病预测模型,通过识别影响疾病形成的关键诱因,并进一步分析诱因对于疾病的作用方式,从而为辅助诊断和精准医疗提供有力支持。【方法】首先,利用随机森林模型在疾病数据的多维特征中筛选出最具代表性... 【目的】构建具有可解释性的高质量疾病预测模型,通过识别影响疾病形成的关键诱因,并进一步分析诱因对于疾病的作用方式,从而为辅助诊断和精准医疗提供有力支持。【方法】首先,利用随机森林模型在疾病数据的多维特征中筛选出最具代表性的特征子集;其次,通过构建增强型麻雀搜索算法实现支持向量机核参数与惩罚系数的自适应获取;然后,同步应用优化后的支持向量机模型对数据样本进行预测分析,并将该模型与8种基线模型展开对比;最后,借助SHAP解释框架对疾病诱因与疾病形成的作用关系进行量化分析。【结果】以肥胖症为研究对象开展实证研究,所提模型的预测准确率、特异度与马修斯相关系数值分别达到85.5%、83.6%和61.0%,三种指标值均高于其他8组基线模型,证明了该模型的有效性。此外,家族史、蔬菜摄入频率、每日正餐数量、身高、性别、交通工具使用情况与高热量食物摄入情况是影响肥胖症形成的关键因素。【局限】针对肥胖症展开的实证研究无法有效验证模型的泛化性;未对特征变量之间的交互作用进行分析。【结论】本文模型不仅具有较高的预测准确率,还能够分析不同诱因对疾病形成的影响程度和作用方向,所得结论可为医疗机构提供决策支持。 展开更多
关键词 疾病预测 特征选择 可解释性 麻雀搜索算法 支持向量机
原文传递
基于KPCA-ISSA-SVM的控制图模式识别 被引量:2
3
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于t-SNE和ECOC-ISSA-SVM的变压器故障诊断
4
作者 刘蒙 赵晨晓 +4 位作者 朱乔波 李梁 姚旭 李鑫 赵明 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第5期606-613,共8页
为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引... 为解决电力变压器故障诊断中支持向量机(support vector machine,SVM)超参数优化和多分类性能不足的问题,采用t-分布的随机邻居嵌入(t-distributed stochastic neighbor embedding,t-SNE)对26维溶解气体分析(DGA)数据进行非线性降维,引入纠错输出码(error correction output codes,ECOC),将改进麻雀搜索算法(improved sparrow search algorithm,ISSA)与切比雪夫混沌映射、柯西-高斯变分策略相结合,优化SVM超参数,处理多分类问题。研究结果表明:ECOC-ISSA-SVM(t-SNE)模型的诊断精度、召回率、特异性和F1值分别为95.6%、97.8%、99.6%和97.8%,各项指标较传统模型提升效果显著,诊断时间缩短至11 ms,诊断效率显著提高。研究结论为电力设备智能运维提供技术支持。 展开更多
关键词 故障诊断 变压器 油中溶解气体 支持向量机 麻雀搜索算法 t-SNE降维 纠错输出码
原文传递
LMD能量熵和改进SSA-SVM在轴承故障诊断中的应用
5
作者 常琦 吴胜利 邢文婷 《机械设计与制造工程》 2025年第10期121-126,共6页
针对轴承故障严重危害设备安全且数据稀缺的问题,提出基于局部均值分解(LMD)能量熵和改进麻雀搜索算法优化支持向量机(SSA-SVM)的滚动轴承故障诊断方法。首先采用LMD方法对轴承信号进行分解,为避免模态混淆,对不同分量的能量熵进行计算... 针对轴承故障严重危害设备安全且数据稀缺的问题,提出基于局部均值分解(LMD)能量熵和改进麻雀搜索算法优化支持向量机(SSA-SVM)的滚动轴承故障诊断方法。首先采用LMD方法对轴承信号进行分解,为避免模态混淆,对不同分量的能量熵进行计算。然后利用改进SSA对SVM的惩罚因子和核函数半径进行优化,提高SVM的分类精度。最后通过试验数据验证该方法的准确性,结果显示轴承故障分类准确率达97.5000%;通过与其他方法进行对比分析,证明该方法具有一定的优势,可为提高轴承故障诊断精度提供详实的理论和方法支撑。 展开更多
关键词 故障诊断 LMD能量熵 麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于ISSA-SVM的GIS局部放电模式识别方法
6
作者 王嘉易 方源 +4 位作者 寇坚强 夏焰坤 何宇航 张劲 董汉彬 《四川电力技术》 2025年第3期86-92,共7页
为了有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电类型,进而保障设备安全稳定运行,提出了一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machine,SVM)的GI... 为了有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电类型,进而保障设备安全稳定运行,提出了一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(support vector machine,SVM)的GIS局部放电模式识别方法。首先,针对SSA算法易陷入局部最优、易早熟等问题,引入非线性收敛因子、非线性权重因子和柯西算子;然后,根据统计特征参数构成综合特征向量进行特征计算完成特征提取;最后,利用经ISSA算法优化后的SVM算法对局部放电模式进行识别。测试结果表明,所提方法可有效识别GIS局部放电类型,并且较采用粒子群算法和麻雀搜索算法优化的SVM算法在识别精度上分别提高了5.8333%、1.6666%,验证了所提方法的有效性及实用性。 展开更多
关键词 气体绝缘开关组合电器 局部放电 改进麻雀搜索算法 支持向量机 模式识别
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
7
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于SSA-SVM算法的风机故障预警系统暂态特征参数实时监测研究
8
作者 王国忠 雷润锋 +2 位作者 厉玉龙 王海涛 张浩 《国外电子测量技术》 2025年第9期182-187,共6页
针对风电场生产系统中因多源异构导致的数据孤岛与安全响应滞后问题,基于集约化与专业化思路,构建了一套以数据分析为核心的标准化框架。该框架通过对风机历史运行数据进行系统化整理、归类与建模,建立统一分析标准,旨在打通信息壁垒,... 针对风电场生产系统中因多源异构导致的数据孤岛与安全响应滞后问题,基于集约化与专业化思路,构建了一套以数据分析为核心的标准化框架。该框架通过对风机历史运行数据进行系统化整理、归类与建模,建立统一分析标准,旨在打通信息壁垒,实现故障的精准诊断与协同预警。在方法层面,引入数据挖掘技术,采用麻雀搜索算法-支持向量机(Sparrow Search Algorithm-Support Vector Machines,SSA-SVM)算法进行优化,实现对风机大部件、断路器及控制系统暂态特征参数的实时监测与诊断。结合设备故障库与场站故障库生成初始化种群,设计了一种适用于风机故障预警的暂态特征参数实时监测模型。实验结果显示,该模型在测试集上的整体分类准确率达到97.3%,对轴承过温、电流突升和控制信号漂移三类典型故障的识别准确率分别为96.8%、98.1%与97.5%。系统投入运行后,可实现平均提前17.4 min发出故障预警,紧急停机次数同比下降42%,单次故障停机时间由3.8 h缩短至1.6 h。研究表明,所提方法能够有效提升风机故障的早期识别能力,为风电场减少停机损失、优化运维成本提供了可行的技术路径。 展开更多
关键词 多源异构 数据分析 麻雀搜索算法 支持向量机 故障预警
原文传递
基于SSA-SVM的边坡失稳智能预测及预警模型 被引量:33
9
作者 金爱兵 张静辉 +1 位作者 孙浩 王本鑫 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第11期142-148,共7页
针对传统统计学习模型等方法对边坡失稳预测精度低、难度大等问题,在对国内外304个边坡案例中高度、角度、容重、黏聚力、内摩擦角、孔隙压力比和边坡状态等参数进行搜集统计的基础上,建立边坡预测数据库,采用麻雀搜索算法(SSA)优化支... 针对传统统计学习模型等方法对边坡失稳预测精度低、难度大等问题,在对国内外304个边坡案例中高度、角度、容重、黏聚力、内摩擦角、孔隙压力比和边坡状态等参数进行搜集统计的基础上,建立边坡预测数据库,采用麻雀搜索算法(SSA)优化支持向量机(SVM),构建SSA-SVM边坡失稳智能预测模型,实现对边坡失稳智能预测.采用灰狼优化算法、遗传算法、布谷鸟搜索算法、粒子群优化算法、哈里斯鹰优化算法和鲸鱼优化算法优化SVM,并与SSA-SVM模型进行对比,结果表明:SSA-SVM模型在边坡失稳预测中具有突出优势,其准确率、精确率、F1分数、平均精度分数和AUC值分别达到了90.16%,94.28%,91.43%,96.79%和0.954,高于其他优化模型的相应指标,SSA算法相比其他优化算法具有很强的竞争力. 展开更多
关键词 边坡失稳 边坡预测 边坡预警 麻雀搜索算法 支持向量机
原文传递
基于VMD-MSE与SSA-SVM的往复式压缩机气阀故障诊断 被引量:16
10
作者 别锋锋 朱鸿飞 +1 位作者 彭剑 张莹 《振动与冲击》 EI CSCD 北大核心 2022年第19期289-295,共7页
往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提... 往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提取方法,并与采用麻雀寻优算法(soarrow search algorithm,SSA)优化的支持向量机(suppot vector mackine,SVM)相结合,用于往复压缩机气阀故障诊断;通过对往复压缩机气阀信号进行VMD分解,选取合适的内禀模态分量(intrinsic mode function,IMF)进行信号重构,基于MSE熵值分析构成特征向量集,最后将其输入SSA-SVM训练并识别故障类型。试验结果表明,基于VMD-MSE与SSA-SVM的故障诊断模型能有效并准确的识别往复压缩机气阀故障。 展开更多
关键词 往复压缩机 变分模态分解 多尺度样本熵 支持向量机 模式识别
在线阅读 下载PDF
基于SSA-SVM的海杂波背景下小信号检测方法 被引量:13
11
作者 王海峰 行鸿彦 +1 位作者 陈梦 陈子正 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期24-31,共8页
针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,... 针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,提高检测率。在Lorenz混沌系统中加入目标信号进行仿真,结果表明:提出的方法能有效地从强混沌背景噪声中检测出小信号,瞬态小信号预测的均方根误差为0.0004343(信噪比为-137.7073 dB),比传统SVM算法预测信号的均方根误差0.049(信噪比为-54.60 dB)降低了两个数量级。利用IPIX雷达实测海杂波数据,对所提方法进行实验验证,进一步说明了该方法的有效性。 展开更多
关键词 微弱信号检测 支持向量机 麻雀搜索算法 海杂波
原文传递
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:14
12
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
原文传递
基于CHMM和SSA-SVM模型的高速铁路道岔设备健康状态评估方法 被引量:7
13
作者 王彦快 米根锁 +2 位作者 张玉 王宇峰 王朋雨 《铁道学报》 EI CAS CSCD 北大核心 2023年第11期107-116,共10页
为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维... 为更加精准地评估道岔设备健康状态,加强对设备的维护与管理,以ZDJ9型转辙机驱动的高速铁路道岔设备为研究对象,提取道岔功率曲线的时域、频域特征指标及经验模态分解奇异值熵,组成道岔特征指标向量,并采用核主成分分析法消除原始多维特征信息的冗余,构建道岔特征指标样本数据库;利用连续隐马尔可夫模型划分道岔退化状态,在此基础上,建立麻雀搜索算法优化支持向量机的健康状态综合评估模型。研究结果表明:所构建的健康状态评估模型的评估正确率高达98.75%,不仅能够实现高铁道岔设备健康状态综合评估效能,而且明显优于GridSearch-SVM、GA-SVM、PSO-SVM等组合算法,为实现道岔设备由“故障修”到“状态修”的综合智能维护提供可行途径。 展开更多
关键词 高铁道岔设备 健康状态评估 连续隐马尔可夫模型 麻雀搜索算法优化支持向量机 核主成分分析
在线阅读 下载PDF
基于FASSA-SVM的充电桩故障预测算法研究 被引量:11
14
作者 张梅 高犁 陈万利 《电子测量技术》 北大核心 2022年第12期48-53,共6页
为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀... 为了电动汽车直流充电桩的安全稳定运行,提出一种基于改进支持向量机的充电桩故障预测算法。该算法首先针对充电桩的运行参数进行缺失值填充、归一化等预处理;然后将预处理后的数据输入支持向量机模型训练,之后引入萤火虫算法改进麻雀算法对支持向量机模型进行参数寻优,得到最优模型;最后利用得到的最优模型预测诊断充电桩运行状态,来判断充电桩是否发生故障。实验结果表明,本文的预测算法预测精度可达94.68%,远高于传统的支持向量机模型的72.34%,能较准确地预测充电桩运行状态,为其预知维修、保障安全运行提供有力保障。 展开更多
关键词 充电桩 故障预测 支持向量机 麻雀搜索算法 萤火虫算法
原文传递
EEMD-GSSA-SVM滚动轴承故障诊断方法研究 被引量:9
15
作者 宋立业 孙琳 《传感器与微系统》 CSCD 北大核心 2022年第4期56-59,共4页
针对现有滚动轴承故障诊断算法诊断准确度不高的问题,提出了一种基于集合经验模态分解(EEMD)以及全局麻雀群搜索算法(GSSA)优化支持向量机(SVM)的滚动轴承故障诊断方法。所提方法利用EMMD以及能量矩对原始信号进行模态分解与特征提取。... 针对现有滚动轴承故障诊断算法诊断准确度不高的问题,提出了一种基于集合经验模态分解(EEMD)以及全局麻雀群搜索算法(GSSA)优化支持向量机(SVM)的滚动轴承故障诊断方法。所提方法利用EMMD以及能量矩对原始信号进行模态分解与特征提取。为提高诊断精度,提出一种GSSA-SVM算法。首先提出一种对原始麻雀搜索算法(SSA)中的探索粒子更新方式进行全局化改进,以提高其迭代速度与计算精度的GSSA,然后建立GSSA-SVM模型。最后,利用所提算法对实测信号进行诊断分析,验证了所提方法的有效性与优越性。 展开更多
关键词 故障诊断 集合经验模态分解 全局麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于MCMC填补的SSA-SVM煤与瓦斯突出预测模型 被引量:5
16
作者 邵良杉 高英超 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第8期94-99,共6页
为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失... 为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失值进行数据填补,采用SSA优化SVM,建立MCMC-SSA-SVM模型对填补后数据集进行预测,验证MCMC填补有效性和SSA优化性能;分别构建SVM、SSA-SVM、PSO-SVM、GAM-SVM、CMC-SVM、MCMC-PSO-SVM和MCMC-GA-SVM这7种模型进行突出预测,对比预测准确度,分析MCMC-SSA-SVM、MCMC-PSO-SVM和MCMC-GA-SVM的适应度。研究结果表明:MCMC填补后准确度均提升7.89个百分点以上,SSA的优化性能强于PSO和GA,MCMC-SSA-SVM预测准确度最高,为97.37%,泛化能力优于对比模型。研究结果可为煤与瓦斯突出预测研究提供借鉴和参考。 展开更多
关键词 煤与瓦斯突出预测 马尔科夫链蒙特卡罗(MCMC) 麻雀搜索算法(SSA) 数据填补 支持向量机(SVM)
在线阅读 下载PDF
牛奶蛋白质含量的SSA-SVM高光谱预测模型 被引量:26
17
作者 刘美辰 薛河儒 +4 位作者 刘江平 代荣荣 胡鹏伟 黄清 姜新华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1601-1606,共6页
牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分。高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素。为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争... 牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分。高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素。为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争性自适应重加权(CARS)算法选取特征波长,并提出一种基于麻雀搜索算法(SSA)优化支持向量机(SVM)实现对牛奶蛋白质含量预测。利用高光谱仪获取牛奶反射光谱(400~1000nm)。通过选取归一化(N)、标准化(Standardization)和多元散射校正(MSC)对原始的牛奶数据进行光谱降噪处理提高光谱利用率;利用竞争性自适应重加权算法和连续投影算法(SPA)对经过处理的牛奶光谱数据提取特征波长,求取蛋白质和光谱间的相关系数并进行重要性排序,获取重要的特征波段;最后,通过遗传算法(GA)优化SVM,粒子群算法(PSO)优化SVM和偏最小二乘法(PLS)算法对牛奶蛋白质进行预测并比较预测结果,为了提高蛋白质预测的精度和模型稳定性,提出利用SSA对SVM的核函数g和惩罚参数c进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代选择最优的回归参数训练模型。牛奶数据预测结果表明最优组合模型为:MSC-CARS-SSA-SVM。模型测试集的决定系数R^(2)为0.9996,均方根误差RMSE为0.0011,耗时4.1121s。结果表明:使用CARS算法能实现特征波段的提取和冗余信息的剔除,从而提高模型效率,简化了算法的复杂度;SSA算法优化SVM的参数,通过迭代更新麻雀最优位置,可以快速得到全局最优解,与SVM,GA-SVM,PSO-SVM和PLS相比,牛奶蛋白质的预测准确度和模型稳定性都得到了明显提高,满足了对乳品检测的精确度要求,是快速检测牛奶蛋白质的一个可行新方法。为光谱模型的优化及预测模型精度的提高提供参考。 展开更多
关键词 高光谱 牛奶蛋白质 竞争性自适应重加权算法 支持向量机 麻雀算法
在线阅读 下载PDF
基于SSA-SVM的寒区沿边公路潜在事故黑点识别
18
作者 裴玉龙 金子微 《交通运输研究》 2024年第5期52-63,共12页
为提升寒区沿边公路的安全性和可靠性,提前规避部分事故风险,提出一种基于SSA-SVM的寒区沿边公路潜在事故黑点识别方法。首先,针对寒区沿边公路的特征设计了32种驾驶模拟试验对比场景,利用驾驶模拟器和眼动仪采集车辆运行指标数据和驾... 为提升寒区沿边公路的安全性和可靠性,提前规避部分事故风险,提出一种基于SSA-SVM的寒区沿边公路潜在事故黑点识别方法。首先,针对寒区沿边公路的特征设计了32种驾驶模拟试验对比场景,利用驾驶模拟器和眼动仪采集车辆运行指标数据和驾驶人驾驶行为指标数据,并进行了指标差异性分析,选取加速踏板开合度、制动信号、方向盘转角、横向加速度、驾驶人瞳孔直径5项指标综合反映寒区沿边公路的潜在事故风险;然后,构建基于SSA-SVM算法的寒区沿边公路潜在事故黑点识别模型,通过SSA算法高效的搜索能力和寻优时较高的准确性来优化SVM模型的参数;最后,利用驾驶模拟试验数据验证所提SSA-SVM模型的有效性,并与CPO-SVM、GWO-SVM模型进行对比分析。结果表明:在3种模型中,基于SSA-SVM的寒区沿边公路潜在事故黑点识别模型的识别准确率最高,其预测集准确率为93.12%,最优适应度值为0.00141;该模型能有效识别出不同季节条件下寒区沿边公路潜在事故黑点,可为制定科学的寒区沿边公路事故预防措施提供理论依据。 展开更多
关键词 事故黑点 驾驶模拟 支持向量机 麻雀搜索算法 寒区沿边公路
在线阅读 下载PDF
基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究 被引量:45
19
作者 李怡 李焕锋 刘自然 《机电工程》 CAS 北大核心 2021年第5期599-604,共6页
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM... 针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。 展开更多
关键词 自适应白噪声完整经验模态分解 多尺度熵 麻雀搜索算法 支持向量机 故障诊断
在线阅读 下载PDF
基于SSA-SVM算法的船舶LFCS故障诊断 被引量:5
20
作者 尹衍楚 邹永久 +1 位作者 杜太利 张跃文 《计算机仿真》 2024年第1期548-553,共6页
船舶低温淡水系统作为保障船舶动力装置安全运行的动力系统,一旦发生故障仅依靠轮机员很难及时排除故障。针对支持向量机(support vector machine,SVM)在模式识别方面受自身参数选择影响较大的问题,提出了基于麻雀搜索算法(sparrow sear... 船舶低温淡水系统作为保障船舶动力装置安全运行的动力系统,一旦发生故障仅依靠轮机员很难及时排除故障。针对支持向量机(support vector machine,SVM)在模式识别方面受自身参数选择影响较大的问题,提出了基于麻雀搜索算法(sparrow search algorithm,SSA)优化支持向量机的故障诊断方法。利用麻雀搜索算法(SSA)优化了支持向量机的惩罚参数和核参数,建立了基于SSA-SVM的船舶低温淡水系统故障诊断模型。结果表明,SSA-SVM诊断模型比传统的支持向量机(SVM)和粒子群算法(particle swarm optimization,PSO)优化的支持向量机诊断模型的准确率分别高28%和5%,且收敛速度更快。SSA-SVM算法对船舶低温淡水系统的常见故障进行有效地诊断,能为轮机设备的健康管理及轮机员的诊断决策提供一定的指导。 展开更多
关键词 支持向量机 麻雀搜索算法 故障诊断 算法优化
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部