Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed...Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.展开更多
Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine(FOWT). However, both the methods have their own limitations at prese...Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine(FOWT). However, both the methods have their own limitations at present. In this study, the dynamic responses of a 5 MW OC3 spar-type floating wind turbine designed for a water depth of 200 m are numerically investigated and validated by a 1:50 scaled model test. Moreover, the discrepancies between the numerical calculations and model tests are obtained and discussed. According to the discussions, it is found that the surge and pitch are coupled with the mooring tensions, but the heave is independent of them. Surge and pitch are mainly induced by wave under wind wave conditions. Wind and current will induce the low-frequency average responses, while wave will induce the fluctuation ranges of the responses. In addition, wave will induce the wavefrequency responses but wind and current will restrain the ranges of the responses.展开更多
As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is p...As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is primarily devoted to the analysis of dynamic response of the NREL-5 MW reference wind turbine supported by an OC3-Hywind SPAR-type platform using a recompiled code which combines FAST with WAMIT.To verify the reliability of the recompiled code,the free decay motions of a floating wind turbine system in still water are examined with satisfactory results.After that,thirteen scenarios with different angles between wind and wave from 0°to 90°are investigated.The dynamic responses of the turbine system in various degrees of freedom(DOFs)for different incident wind/wave directions are presented in both time and frequency domains via the fast Fourier transform.展开更多
A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hyb...A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hybrid system depends on the dimensions of the WEC.Here an optimization method is proposed to determine the outer radius and the draft of the WEC under the wave condition in a randomly chosen operational site.First,three candidate models are selected based on three operational conditions of energy harvest:(1)The natural frequency of the system is matched with the peak wave frequency in the target site(referred to as synchronized mode),where the wind turbine and the WEC nearly heave together in a near-resonance condition,(2)The natural frequency of the WEC is matched with the peak wave frequency(ring mode),(3)The maximum wave power is harnessed under the peak wave frequency(target mode).Then the candidate modes are evaluated to obtain an optimum.Results show that the extracted wave power under the above operational conditions has an upper bound that can hardly be surpassed by enlarging the dimensions of the WEC only.The optimal annual wave energy production is achieved in the synchronized mode because of the superior performance of WEC over a wide bandwidth of effective energy conversion.展开更多
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
基金financially supported by the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University and the National Science and Technology Major Project of China(Grant No.2016ZX05028-002-004)
文摘Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine(FOWT). However, both the methods have their own limitations at present. In this study, the dynamic responses of a 5 MW OC3 spar-type floating wind turbine designed for a water depth of 200 m are numerically investigated and validated by a 1:50 scaled model test. Moreover, the discrepancies between the numerical calculations and model tests are obtained and discussed. According to the discussions, it is found that the surge and pitch are coupled with the mooring tensions, but the heave is independent of them. Surge and pitch are mainly induced by wave under wind wave conditions. Wind and current will induce the low-frequency average responses, while wave will induce the fluctuation ranges of the responses. In addition, wave will induce the wavefrequency responses but wind and current will restrain the ranges of the responses.
文摘As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is primarily devoted to the analysis of dynamic response of the NREL-5 MW reference wind turbine supported by an OC3-Hywind SPAR-type platform using a recompiled code which combines FAST with WAMIT.To verify the reliability of the recompiled code,the free decay motions of a floating wind turbine system in still water are examined with satisfactory results.After that,thirteen scenarios with different angles between wind and wave from 0°to 90°are investigated.The dynamic responses of the turbine system in various degrees of freedom(DOFs)for different incident wind/wave directions are presented in both time and frequency domains via the fast Fourier transform.
基金Supported by National Natural Science Foundation of China(No.51879190)the Fund of the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(No.1501)~~
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515020036)the Natural Science Foundation of Guangzhou City(Grant No.202201010055)the Fundamental Research Funds for the Central Universities(Grant No.2022ZYGXZR014).
文摘A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hybrid system depends on the dimensions of the WEC.Here an optimization method is proposed to determine the outer radius and the draft of the WEC under the wave condition in a randomly chosen operational site.First,three candidate models are selected based on three operational conditions of energy harvest:(1)The natural frequency of the system is matched with the peak wave frequency in the target site(referred to as synchronized mode),where the wind turbine and the WEC nearly heave together in a near-resonance condition,(2)The natural frequency of the WEC is matched with the peak wave frequency(ring mode),(3)The maximum wave power is harnessed under the peak wave frequency(target mode).Then the candidate modes are evaluated to obtain an optimum.Results show that the extracted wave power under the above operational conditions has an upper bound that can hardly be surpassed by enlarging the dimensions of the WEC only.The optimal annual wave energy production is achieved in the synchronized mode because of the superior performance of WEC over a wide bandwidth of effective energy conversion.