Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated i...Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated information networks will converge to a whole fully connected information network to provide more flexible and reliable services on a world scale. Regarding their great successes in existing systems, multiantenna technologies will be of critical importance for the realization of SGINs and multi-antenna technologies are definitely one of the most important enabling technologies for future converged SGINs. In this article, a comprehensive overview on multi-antenna technologies is given. We first investigate multi-antenna technologies from a theoretical viewpoint. It is shown that we can understand multi-antenna technologies in a general and unified point of view. This fact has two-fold meanings. First, the research on multi-antennas can help us understand the relationships between different technologies e.g., OFDMA, CDMA, etc. On the other hand,multi-antenna technologies are easy to integrate into various information systems. Following that, we discuss in depth the potentials and challenges of the multi-antenna technologies on different platforms and in different applications case by case. More specifically, we investigate spaceborne multi-antenna technologies, airborne multi-antenna technologies, shipborne multi-antenna technologies, etc. Moreover, the combinations of multiantenna technologies with other advanced wireless technologies e.g., physical layer network coding, cooperative communication, etc., are also elaborated.展开更多
随着第六代移动通信系统(6th generation mobile communication system, 6G)通信技术的发展,空天地一体化网络(Spaceair-ground integrated network, SAGIN)作为6G的重要组成部分,旨在实现卫星、空中平台与地面系统的无缝互联,在应急通...随着第六代移动通信系统(6th generation mobile communication system, 6G)通信技术的发展,空天地一体化网络(Spaceair-ground integrated network, SAGIN)作为6G的重要组成部分,旨在实现卫星、空中平台与地面系统的无缝互联,在应急通信、环境监测、智能交通等领域展现出巨大的潜力.然而,SAGIN具有异构结构、链路动态性高、资源分布广泛等特征,给网络的高效管理与优化带来巨大的挑战.近年来,人工智能(Artificial intelligence, AI)技术凭借强大的感知、学习与自主决策能力应用于通信网络,为SAGIN的智能演进提供了新契机.本文首先系统介绍SAGIN网络架构的基本组成与关键特征,并梳理当前主流AI技术在网络优化中的主要技术体系与适配优势,包括机器学习、图神经网络以及强化学习.其次,本文深入探讨了AI技术在SAGIN中智能资源管理、移动性管理与路由优化、空中平台路径规划、任务卸载与计算协同等典型场景中的应用与最新进展.最后,本文总结了AI技术应用在SAGIN网络中面临的挑战并展望了AI与SAGIN融合发展的未来方向.本文概述了AI技术在SAGIN网络中应用的优势与进展,旨在为AI赋能的SAGIN研究与应用发展提供技术参考.展开更多
基金supported in part by National Scientific Foundation of China for Young Scholars(Grant Nos.61301088,61301089)
文摘Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated information networks will converge to a whole fully connected information network to provide more flexible and reliable services on a world scale. Regarding their great successes in existing systems, multiantenna technologies will be of critical importance for the realization of SGINs and multi-antenna technologies are definitely one of the most important enabling technologies for future converged SGINs. In this article, a comprehensive overview on multi-antenna technologies is given. We first investigate multi-antenna technologies from a theoretical viewpoint. It is shown that we can understand multi-antenna technologies in a general and unified point of view. This fact has two-fold meanings. First, the research on multi-antennas can help us understand the relationships between different technologies e.g., OFDMA, CDMA, etc. On the other hand,multi-antenna technologies are easy to integrate into various information systems. Following that, we discuss in depth the potentials and challenges of the multi-antenna technologies on different platforms and in different applications case by case. More specifically, we investigate spaceborne multi-antenna technologies, airborne multi-antenna technologies, shipborne multi-antenna technologies, etc. Moreover, the combinations of multiantenna technologies with other advanced wireless technologies e.g., physical layer network coding, cooperative communication, etc., are also elaborated.