With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN...With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN) with traditional space-based networks provides a new class of ideas for solving this problem.However,because of the highly centralized network management of the SDN controller,once the SDN controller is destroyed by network attacks,the network it manages will be paralyzed due to loss of control.One of the main security threats to SDN controllers is Distributed Denial of Service(DDoS) attacks,so how to detect DDoS attacks scientifically has become a hot topic among SDN security management.This paper proposes a DDoS attack detection method for space-based networks based on SDN architecture.This attack detection method combines the optimized Long Short-Term Memory(LSTM) deep learning model and Support Vector Machine(SVM),which can not only make classification judgments on the time series,but also achieve the purpose of detecting and judging through the flow characteristics of a period of time.In addition,it can reduce the detection time as well as the system burden.展开更多
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
Task-oriented networked information system is an integrated information system which builds on multi-satellite networking to accomplish one or more tasks. In the background of emer- gency relief for applications, syst...Task-oriented networked information system is an integrated information system which builds on multi-satellite networking to accomplish one or more tasks. In the background of emer- gency relief for applications, system working flow and response process are analyzed, and a timeliness effectiveness evaluation index system is constructed at multi-task level. The effectiveness is a measurement of promptness of information return. In evalua- tion process, system performance and tasks are associated, then an evaluation model based on efficacy function is established, and different evaluation criteria are selected for different tasks. A distributed simulation system is constructed, and the execution of task is decomposed. The simulation platform provides a comprehensive data source for evaluation. The results are easy to compare with each other, which reflects system time efficiency in different satellites networks and provides actual systems with basis and reference for design and application.展开更多
The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on Jul...The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on July 25. Twenty-six minutes after the liftoff, the satellite展开更多
Using satellites to complete spectrum monitoring tasks can effectively receive and process electromagnetic spectrum signals emitted by radiation sources.However,due to the shortage of satellite storage,computing and n...Using satellites to complete spectrum monitoring tasks can effectively receive and process electromagnetic spectrum signals emitted by radiation sources.However,due to the shortage of satellite storage,computing and network resources,the intersatellite coordination is weak,and with the massive growth of spectrum data,the traditional cloud computing mode cannot meet the requirements of electromagnetic spectrum monitoring in terms of real-time,bandwidth,and security.We apply edge computing technology and deep learning technology to the satellite.Aiming at the problems of distributed satellite management and control,we propose a space-based distributed electromagnetic spectrum monitoring intelligent connected cloud-edge collaborative architecture SpaceEdge.SpaceEdge applies edge computing and artificial intelligence technology to space-based spectrum monitoring.SpaceEdge deploys intelligent monitoring algorithms to edge nodes to form edge intelligent satellite,and uses the cloud to uniformly manage and control heterogeneous edge satellite and monitor satellite resources.In addition,SpaceEdge can also adjust edge intelligent spectrum monitoring applications as needed to achieve effective coordination of inter-satellite algorithms and data to achieve the purpose of collaborative monitoring.Finally,SpaceEdge was experimentally verified,and the results proved the feasibility of SpaceEdge and can improve the timeliness and autonomy of the distributed satellite’s coordinated signal monitoring.展开更多
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha...BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser ir...High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.展开更多
Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the per...Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.展开更多
A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine t...A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.展开更多
Space-based Automatic Dependent Surveillance-Broadcast(ADS-B)technology can eliminate the blind spots of terrestrial ADS-B systems because of its global coverage capability.However,the space-based ADS-B system faces n...Space-based Automatic Dependent Surveillance-Broadcast(ADS-B)technology can eliminate the blind spots of terrestrial ADS-B systems because of its global coverage capability.However,the space-based ADS-B system faces new problems such as extremely low Signal-toNoise Ratio(SNR)and serious co-channel interference,which result in long update intervals.To minimize the position message update interval at an update probability of 95%with full coverage constraint,this paper presents an optimization model of digital multi-beamforming for space-based ADS-B.Then,a coevolution method DECCG_A&A is proposed to enhance the optimization efficiency by using an improved adaptive grouping strategy.The strategy is based on the locations of uncovered areas and the aircraft density under the coverage of each beam.Simulation results show that the update interval can be effectively controlled to be below 8 seconds compared with other existing methods,and DECCG_A&A is superior in convergence to the Genetic Algorithm(GA)as well as the coevolution algorithms using other grouping strategies.Overall,the proposed optimization model and method can significantly reduce the update interval,thus improving the surveillance performance of space-based ADS-B for air traffic control.展开更多
Infrared detection technology has greatly expanded the ability of mankind to study the earth and the universe. In recent years, the demand for long-wavelength infrared detectors is increasing for their advantages in e...Infrared detection technology has greatly expanded the ability of mankind to study the earth and the universe. In recent years, the demand for long-wavelength infrared detectors is increasing for their advantages in exploring the earth and the universe. A variety of long-wavelength infrared detectors have been made based on thermal resistive effect, photoelectric effect, etc., in the past few decades. Remarkable achievements have been made in infrared materials, device fabrication,readout circuit, and device package. However, high performance long-wavelength infrared detectors, especially those for large format long-wavelength infrared detector focus plane array, are still unsatisfactory. Low noise, high detectivity, and large format long-wavelength infrared detector is necessary to satisfy space-based application requirements.展开更多
In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase e...In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase efficiency in target detection and improve system security, a blind source separation method is adopted for processing the conflicting signals received by satellites. Compared to traditional methods, we formulate the separation problem as a clustering problem. Since our algorithm is affected by the sparseness of source signals, to get satisfactory results, our algorithm assumes that the distance between two arbitrary mixed-signal vectors is less than the doubled sum of variances of distribution of the corresponding mixtures. Signal sparsity is overcome by computing the Short-Time Fourier Transform, and the mixed source signals are separated using the improved PSO clustering. We evaluated the performance and the robustness of the proposed network architecture by several simulations. The experimental results demonstrate the effectiveness of the proposed method in not only improving satellite signal receiving ability but also in enhancing space-based AIS security.展开更多
Although great-progress has been made in the earth sciences,some fundamental problems of geodynamics remain unsolved.They are concerned with the whole earth as well as regional tectonics,such as the west Pacific and Q...Although great-progress has been made in the earth sciences,some fundamental problems of geodynamics remain unsolved.They are concerned with the whole earth as well as regional tectonics,such as the west Pacific and Qinghai-Xizhang plateau.The new generation of earth observation by space-based measurement will contribute to solving these problems of geodynamics.In this regard,some specific plans about application of these techniques are suggested in this paper.展开更多
A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and ...A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate th...This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.展开更多
基金the National Natural Science Foundation of Chi⁃na under Grant Nos.61671183 and 61771163.
文摘With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN) with traditional space-based networks provides a new class of ideas for solving this problem.However,because of the highly centralized network management of the SDN controller,once the SDN controller is destroyed by network attacks,the network it manages will be paralyzed due to loss of control.One of the main security threats to SDN controllers is Distributed Denial of Service(DDoS) attacks,so how to detect DDoS attacks scientifically has become a hot topic among SDN security management.This paper proposes a DDoS attack detection method for space-based networks based on SDN architecture.This attack detection method combines the optimized Long Short-Term Memory(LSTM) deep learning model and Support Vector Machine(SVM),which can not only make classification judgments on the time series,but also achieve the purpose of detecting and judging through the flow characteristics of a period of time.In addition,it can reduce the detection time as well as the system burden.
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
基金supported by the National Outstanding Youth Science Foundation(60925011)the Ministerial Key Foundation(9140A170510-10BQ01)China Postdoctoral Science Foundation(20110490033)
文摘Task-oriented networked information system is an integrated information system which builds on multi-satellite networking to accomplish one or more tasks. In the background of emer- gency relief for applications, system working flow and response process are analyzed, and a timeliness effectiveness evaluation index system is constructed at multi-task level. The effectiveness is a measurement of promptness of information return. In evalua- tion process, system performance and tasks are associated, then an evaluation model based on efficacy function is established, and different evaluation criteria are selected for different tasks. A distributed simulation system is constructed, and the execution of task is decomposed. The simulation platform provides a comprehensive data source for evaluation. The results are easy to compare with each other, which reflects system time efficiency in different satellites networks and provides actual systems with basis and reference for design and application.
文摘The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on July 25. Twenty-six minutes after the liftoff, the satellite
文摘Using satellites to complete spectrum monitoring tasks can effectively receive and process electromagnetic spectrum signals emitted by radiation sources.However,due to the shortage of satellite storage,computing and network resources,the intersatellite coordination is weak,and with the massive growth of spectrum data,the traditional cloud computing mode cannot meet the requirements of electromagnetic spectrum monitoring in terms of real-time,bandwidth,and security.We apply edge computing technology and deep learning technology to the satellite.Aiming at the problems of distributed satellite management and control,we propose a space-based distributed electromagnetic spectrum monitoring intelligent connected cloud-edge collaborative architecture SpaceEdge.SpaceEdge applies edge computing and artificial intelligence technology to space-based spectrum monitoring.SpaceEdge deploys intelligent monitoring algorithms to edge nodes to form edge intelligent satellite,and uses the cloud to uniformly manage and control heterogeneous edge satellite and monitor satellite resources.In addition,SpaceEdge can also adjust edge intelligent spectrum monitoring applications as needed to achieve effective coordination of inter-satellite algorithms and data to achieve the purpose of collaborative monitoring.Finally,SpaceEdge was experimentally verified,and the results proved the feasibility of SpaceEdge and can improve the timeliness and autonomy of the distributed satellite’s coordinated signal monitoring.
基金Supported by Key Research and Development Program of Shaanxi Province,China,No.2024SF-YBXM-078.
文摘BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金supported by the National Natural Science Foundation of China(No:11102234)Provincial Level Project of China
文摘High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.
基金This work was supported by the National Natural Science Foundation of China(61690210,61690213).
文摘Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.
基金the Chinese Academy of Meteorological Sciences Basic Scientific and Operational Project(observation and retrieval methods of microphysics and dynamic parameters of cloud and precipitation with multi-wavelength remote sensing)the National Key Program for Developing Basic Sciences under Grant 2012CB417202+1 种基金the Meteorological Special Project(study and data process and key technology for space-borne precipitation radar)the National Natural Science Foundation of China(Grant Nos.40775021 and 41075098)
文摘A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.
文摘Space-based Automatic Dependent Surveillance-Broadcast(ADS-B)technology can eliminate the blind spots of terrestrial ADS-B systems because of its global coverage capability.However,the space-based ADS-B system faces new problems such as extremely low Signal-toNoise Ratio(SNR)and serious co-channel interference,which result in long update intervals.To minimize the position message update interval at an update probability of 95%with full coverage constraint,this paper presents an optimization model of digital multi-beamforming for space-based ADS-B.Then,a coevolution method DECCG_A&A is proposed to enhance the optimization efficiency by using an improved adaptive grouping strategy.The strategy is based on the locations of uncovered areas and the aircraft density under the coverage of each beam.Simulation results show that the update interval can be effectively controlled to be below 8 seconds compared with other existing methods,and DECCG_A&A is superior in convergence to the Genetic Algorithm(GA)as well as the coevolution algorithms using other grouping strategies.Overall,the proposed optimization model and method can significantly reduce the update interval,thus improving the surveillance performance of space-based ADS-B for air traffic control.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51502337)the Fund from China Academy of Space Technology
文摘Infrared detection technology has greatly expanded the ability of mankind to study the earth and the universe. In recent years, the demand for long-wavelength infrared detectors is increasing for their advantages in exploring the earth and the universe. A variety of long-wavelength infrared detectors have been made based on thermal resistive effect, photoelectric effect, etc., in the past few decades. Remarkable achievements have been made in infrared materials, device fabrication,readout circuit, and device package. However, high performance long-wavelength infrared detectors, especially those for large format long-wavelength infrared detector focus plane array, are still unsatisfactory. Low noise, high detectivity, and large format long-wavelength infrared detector is necessary to satisfy space-based application requirements.
基金supported by National Natural Science Foundation of China (No. 61821001)fully supported by Natural Science Foundation of China Project (61871422)+5 种基金Science and Technology Program of Sichuan Province (2020YFH0071)National Natural Science Foundation of China under Grant (61801319)in part by Sichuan Science and Technology Program under Grant (2020JDJQ0061), (2021YFG0099)in part by the Sichuan University of Science and Engineering Talent Introduction Project under Grant (2020RC33)Innovation Fund of Chinese Universities under Grant (2020HYA04001)Technology Key Project of Guangdong Province, China (2019B010157001)。
文摘In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase efficiency in target detection and improve system security, a blind source separation method is adopted for processing the conflicting signals received by satellites. Compared to traditional methods, we formulate the separation problem as a clustering problem. Since our algorithm is affected by the sparseness of source signals, to get satisfactory results, our algorithm assumes that the distance between two arbitrary mixed-signal vectors is less than the doubled sum of variances of distribution of the corresponding mixtures. Signal sparsity is overcome by computing the Short-Time Fourier Transform, and the mixed source signals are separated using the improved PSO clustering. We evaluated the performance and the robustness of the proposed network architecture by several simulations. The experimental results demonstrate the effectiveness of the proposed method in not only improving satellite signal receiving ability but also in enhancing space-based AIS security.
文摘Although great-progress has been made in the earth sciences,some fundamental problems of geodynamics remain unsolved.They are concerned with the whole earth as well as regional tectonics,such as the west Pacific and Qinghai-Xizhang plateau.The new generation of earth observation by space-based measurement will contribute to solving these problems of geodynamics.In this regard,some specific plans about application of these techniques are suggested in this paper.
文摘A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Supported by the National Basic Research Program of China under Grant No. 2003 CB 716300the National Natural Science Foundation of China under Grant No. 10575140+2 种基金CAEP Foundation under Grant No. 2008T0401 and 2008T0402Chongqing University Postgraduates Science and Innovation Fund, Project No. 200811B1A0100299Chinese State Scholarship Fund
文摘This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.