The stereo matching method based on a space-aware network is proposed, which divides the network into threesections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue netwo...The stereo matching method based on a space-aware network is proposed, which divides the network into threesections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue network and densenetwork into the space-aware network model. The vertical splitting method for computing matching cost by usingthe space-aware network is proposed for solving the limitation of GPU RAM. Moreover, a hybrid loss is broughtforward to boost the performance of the proposed deep network. In the proposed stereo matching method, thespace-aware network is used to calculate the matching cost and then cross-based cost aggregation and semi-globalmatching are employed to compute a disparity map. Finally, a disparity-post processing method is utilized suchas subpixel interpolation, median filter, and bilateral filter. The experimental results show this method has a goodperformance on running time and accuracy, with a percentage of erroneous pixels of 1.23% on KITTI 2012 and1.94% on KITTI 2015.展开更多
基金This work was supported in part by the Heilongjiang Provincial Natural Science Foundation of China under Grant F2018002the Research Funds for the Central Universities under Grants 2572016BB11 and 2572016BB12the Foundation of Heilongjiang Education Department under Grant 1354MSYYB003.
文摘The stereo matching method based on a space-aware network is proposed, which divides the network into threesections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue network and densenetwork into the space-aware network model. The vertical splitting method for computing matching cost by usingthe space-aware network is proposed for solving the limitation of GPU RAM. Moreover, a hybrid loss is broughtforward to boost the performance of the proposed deep network. In the proposed stereo matching method, thespace-aware network is used to calculate the matching cost and then cross-based cost aggregation and semi-globalmatching are employed to compute a disparity map. Finally, a disparity-post processing method is utilized suchas subpixel interpolation, median filter, and bilateral filter. The experimental results show this method has a goodperformance on running time and accuracy, with a percentage of erroneous pixels of 1.23% on KITTI 2012 and1.94% on KITTI 2015.