期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic modeling and beating phenomenon analysis of space robots with continuum manipulators 被引量:4
1
作者 Jinzhao YANG Haijun PENG +1 位作者 Jie ZHANG Zhigang WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期226-241,共16页
Space robotics has been used extensively in complex space missions. Rigid-manipulator space robots may suffer from rigid-body collisions with targets. This collision is likely to cause damage to the space robot and th... Space robotics has been used extensively in complex space missions. Rigid-manipulator space robots may suffer from rigid-body collisions with targets. This collision is likely to cause damage to the space robot and the target. To overcome such a problem, a novel ContinuumManipulator Space Robot(CMSR) for performing on-orbit servicing missions is proposed in this paper. Compared with rigid-manipulator space robots, CMSRs are able to perform compliant operations and avoid rigid-body collisions with a target. The CMSR consists of two kinds of flexible components, including solar arrays and continuum manipulators. The elastic vibrations of these flexible components disturb the position and attitude of CMSRs. The beating phenomenon introduced by the energy transfer among these flexible components can cause damage to solar arrays.The complicated dynamic coupling poses enormous challenges in dynamic modeling and vibration analysis. The dynamic model for CMSRs is derived and the mechanism of the beating phenomenon is analyzed in this paper. Simulation results show that an obvious beating phenomenon occurs and the amplitude of the solar arrays increases significantly when the natural frequencies of two kinds of flexible components are close. A method is provided to avoid the beating phenomenon. 展开更多
关键词 Continuum manipulators Dynamic model Solar arrays space robots Vibration analysis
原文传递
Project Systems Engineering for Developing Space Robots
2
作者 Li Gengtian, Li ZhibinBeijing Institute of Control Engineering, P.O.Box 2729, Beijing 100080, ChinaLü YingxiangBeijing Institute of Electromechanic System Engineering.P.O.Box 142-206, Beijing 100854, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第1期97-106,共10页
Space robots possess unique distinguishing features unlike general robots on earth, due to the particular environments in space. The developing of various practical space robots promoting the improvement of space scie... Space robots possess unique distinguishing features unlike general robots on earth, due to the particular environments in space. The developing of various practical space robots promoting the improvement of space science and technology is a complex man-machine-environment engineering problem. This paper analyses from the systems engineering viewpoint the space robot system in the scope of the architecture of robotics discipline, space environment characteristics, man-machine-environment system of space robots, the general methodology of project systems engineering and the process of space robot systems engineering. 展开更多
关键词 space robots Systems engineering Project systems engineering.
在线阅读 下载PDF
Postcapture stabilization of space robots considering actuator failures with bounded torques 被引量:4
3
作者 Xiaokui YUE Teng ZHANG +2 位作者 Honghua DAI Xin NING Jianping YUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期2034-2048,共15页
Space robotics is regarded as one of the most impressing approaches for space debris removal missions. Due to the residual momentum of debris, it is essential to stabilize the base rapidly after capture. This paper pr... Space robotics is regarded as one of the most impressing approaches for space debris removal missions. Due to the residual momentum of debris, it is essential to stabilize the base rapidly after capture. This paper presents a novel control strategy for stabilization of a space robot in postcapture considering actuator failures and bounded torques. In the control strategy, the motion of the manipulator is not regarded as a disturbance to the base; in contrast, it is utilized to compensate for the limitation of the control torques by means of an inverse dynamical model of the system. Different scenarios where actuators are external mechanisms or momentum exchange devices have been carried out, and for actuator failures, both single-and two-actuator failures have been considered. Regarding to the performance of actuators, control torques are bounded. In cases that either single or two actuators have failed, the base can be stabilized kinematically when actuators are external mechanisms, but can only be stabilized dynamically when only momentum exchange devices are used. Finally, a space robot with a seven-degree-of-freedom manipulator in postcapture is studied to verify the validity and feasibility of the proposed control scheme. Simulation results show that the whole system can be stabilized rapidly. 展开更多
关键词 Actuator failure Attitude control Bounded torque Postcapture space robot
原文传递
New self-calibration approach to space robots based on hand-eye vision 被引量:3
4
作者 刘宇 刘宏 +1 位作者 倪风雷 徐文福 《Journal of Central South University》 SCIE EI CAS 2011年第4期1087-1096,共10页
To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) a... To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy. 展开更多
关键词 space robot SELF-CALIBRATION cost function hand-eye vision particle swarm optimization algorithm
在线阅读 下载PDF
Workspace,stiffness analysis and design optimization of coupled active-passive multilink cable-driven space robots for on-orbit services
5
作者 Jianqing PENG Haoxuan WU +1 位作者 Tianliang LIU Yu HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期402-416,共15页
The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference... The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference)has greatly restricted the application of SRs.The coupled active-passive multilink cable-driven space robot(CAP-MCDSR)has the characteristics of slim body,flexible movement,and electromechanical separation,which is very suitable for extreme space environments.However,the dynamic and stiffness modeling of CAP-MCDSRs is challenging,due to the complex coupling among the active cables,passive cables,joints,and the end-effector.To deal with these problems,this paper proposes a workspace,stiffness analysis and design optimization method for such type of MCDSRs.Firstly,the multi-coupling kinematics relationships among the joint,cables and the end-effector are established.Based on hybrid series-parallel characteristics,the improved coupled active–passive(CAP)dynamic equation is derived.Then,the maximum workspace,the maximum stiffness,and the minimum cable tension are resolved,among them,the overall stiffness is the superposition of the stiffness produced by the active and the passive cable.Furthermore,the workspace,the stiffness,and the cable tension are analyzed by using the nonlinear optimization method(NOPM).Finally,an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods.The proposed modeling and analysis results are very useful for practical space applications,such as designing a new CAP-MCDSR,or utilizing an existing CAP-MCDSR system. 展开更多
关键词 Coupled active–passive(CAP) Hybrid series-parallel Multilink cable-driven space robot(MCDSR) Nonlinear optimization(NOP) On-orbit services(OOSs) Robotics space
原文传递
Predefined-time controller design for a multiple space transportation robots system based on Lp-Norm-Normalized Sign Function
6
作者 Ran TAO Yibo DING +1 位作者 Hanyu LI Xiaokui YUE 《Chinese Journal of Aeronautics》 2025年第2期432-444,共13页
This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firs... This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time. 展开更多
关键词 Multiple space transportation robots system On-orbit assemblyPredefined-time stability criterion Composite Lyapunov function Lp-Norm-Normalized Sign Function Predefined-time controller
原文传递
A comprehensive review of tactile sensing technologies in space robotics
7
作者 Hadi JAHANSHAHI Zheng H.ZHU 《Chinese Journal of Aeronautics》 2025年第7期340-373,共34页
This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,m... This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,microgravity,and vacuum conditions,which necessitate specialized sensor designs.We provide a detailed analysis of four primary types of tactile sensors:resistive,capacitive,piezoelectric,and optical,evaluating their operating principles,advantages,limitations,and specific applications in space exploration.Recent advancements in materials science,including the development of radiation-hardened components and flexible sensor materials,are discussed alongside innovations in sensor design and integration techniques that enhance performance and durability under space conditions.Through case studies of various space robotic systems,such as Mars rovers,robotic arms like Canadarm,humanoid robots like Robonaut,and specialized robots like Astrobee and LEMUR 3,this review highlights the crucial role of tactile sensing in enabling precise manipulation,environmental interaction,and autonomous operations in space.Moreover,it synthesizes current research and applications to underscore the transformative impact of tactile sensing technologies on space robotics and highlights their pivotal role in expanding human presence and scientific understanding in space,offering strategic insights and recommendations to guide future research and development in this critical field. 展开更多
关键词 Tactile sensors Resistive sensors Capacitive sensors PIEZOELECTRICITY Optical sensors space robotics
原文传递
Task space control of free-floating space robots using constrained adaptive RBF-NTSM 被引量:11
8
作者 GUO ShengPeng LI DongXu +1 位作者 MENG YunHe FAN CaiZhi 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期828-837,共10页
Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating... Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control. 展开更多
关键词 free-floating space robots task space radial basis function nonsingular terminal sliding mode
原文传递
Reorientation and obstacle avoidance control of free-floating modular robots using sinusoidal oscillator 被引量:1
9
作者 Zhiyuan YANG Mingzhu LAI +4 位作者 Jian QI Ning ZHAO Xin SUI Jie ZHAO Yanhe ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期262-275,共14页
This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude ... This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models. 展开更多
关键词 Collision avoidance Modularrobots REORIENTATION Free-floating space robots Nonholonomic systems Biologically inspired controllers Serpenoid curve
原文传递
Bio-inspired Attachment Mechanism of Dynastes Hercules:Vertical Climbing for On-Orbit Assembly Legged Robots 被引量:1
10
作者 Yuetian Shi Xuyan Hou +6 位作者 Zhonglai Na Jie Zhou Nan Yu Song Liu Linbo Xin Guowei Gao Yuhui Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期137-148,共12页
With the increasing size of space facilities,on-orbit assembly requires robots to move on different heights of trusses.This paper proposes a bio-inspired attachment mechanism for robot feet to enable climbing on diffe... With the increasing size of space facilities,on-orbit assembly requires robots to move on different heights of trusses.This paper proposes a bio-inspired attachment mechanism for robot feet to enable climbing on different heights of trusses.Inspired by the attachment and grasping abilities of Dynastes Hercules,we utilize its foot microstructures,such as microhooks and setae,to achieve efficient contact and firm grip with the surface.The morphology and arrangement of these structures can inspire the design of robot feet to improve their grasping and stability performance.We study the biological structure of Dynastes Hercules,design and optimize the bio-inspired structure,analyze the influence of various factors from theoretical and experimental perspectives,and verify the feasibility of the scheme through simulation.We propose an ideal climbing strategy that provides useful reference for robot applications in practice.Moreover,the influence laws of various factors in this paper can be applied to robot foot design to improve their operation ability and stability performance in the space environment.This bio-inspired mechanism can improve robot working range and efficiency,which is critical for on-orbit assemblyin space. 展开更多
关键词 space assembly robot Truss climbing Bionic structure Dynastes Hercules tarsus
在线阅读 下载PDF
Game theory based finite-time formation control using artificial potentials for tethered space net robot
11
作者 Yifeng MA Yizhai ZHANG +2 位作者 Panfeng HUANG Ya LIU Fan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期358-372,共15页
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve... The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme. 展开更多
关键词 Game theory Formation control Artificial potential field Relative distance constraint Tethered space net robot(TSNR)
原文传递
Grasping Strategy in Space Robot Capturing Floating Target 被引量:4
12
作者 魏承 刘天喜 赵阳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期591-598,共8页
When the space robot captures a floating target, contact impact occurs inevitably and frequently between the manipulator hand and the target, which seriously impacts the position and attitude of the robot and grasping... When the space robot captures a floating target, contact impact occurs inevitably and frequently between the manipulator hand and the target, which seriously impacts the position and attitude of the robot and grasping security. "Dynamic grasping area" is introduced to describe the collision process of manipulator grasping target, and grasping area control equation is established. By analyzing the impact of grasping control parameters, base and target mass on the grasping process and combining the life experience, it is found that if the product of speed control parameter and dB adjustment parameter is close to but smaller than the minimum grasping speed, collision impact in the grasping process could be reduced greatly, and then an ideal grasping strategy is proposed. Simulation results indicate that during the same period, the strategy grasping is superior to the accelerating grasping, in that the amplitude of impact force is reduced to 20%, and the attitude control torque is reduced to 15%, and the impact on the robot is eliminated significantly. The results would have important academic value and engineering significance. 展开更多
关键词 space robot capturing target dynamic grasping area grasping strategy active damping control
原文传递
Review of in-space assembly technologies 被引量:28
13
作者 Zhihui XUE Jinguo LIU +1 位作者 Chenchen WU Yuchuang TONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期21-47,共27页
With the rapid development of space technology and the increasing demand for space missions,the traditional spacecraft manufacturing,deployment and launch methods have been unable to meet existing needs.In-space assem... With the rapid development of space technology and the increasing demand for space missions,the traditional spacecraft manufacturing,deployment and launch methods have been unable to meet existing needs.In-space assembly(ISA)technologies can effectively adapt to the assembly of large space structures,improve spacecraft performance,and reduce operating costs.In this paper,the development and technologies for ISA are reviewed.ISA is classified from multiple angles,and the research status of ISA is shown clearly through the visual mapping knowledge domain.Then the development status of autonomous robot assembly in the United States,Europe,Japan,Canada and China is reviewed.Furthermore,the key technologies of ISA are analyzed from three aspects:assembly structure design,robot technologies and integrated management technologies.ISA technologies are still facing major challenges and need to be further explored to promote future development.Finally,future development trends and potential applications of ISA are given,which show that ISA will play a vital role in human space exploration in the future. 展开更多
关键词 In-situ resource utilization In-space assembly MODULAR On-orbit servicing space robots
原文传递
Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters 被引量:21
14
作者 Ying-Hong Jia Quan Hu Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期112-124,共13页
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro... A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 space robot Dynamics. Adaptive control Closed-loop constraint Parameter uncertainty - Kane's equation
在线阅读 下载PDF
Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target 被引量:13
15
作者 Gang CHEN Yuqi WANG +3 位作者 Yifan WANG Ji LIANG Long ZHANG Guangtang PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1093-1106,共14页
The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture ... The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture can be accomplished by the space robot.In this paper,a detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target is proposed.This strategy can reduce the target's rotational velocity while maintaining base attitude stability through the establishment of the rotation attenuation controller and base attitude adjustment controller.The rotation attenuation controller adopts the multi-space hybrid impedance control method to control the friction precisely.The base attitude adjustment controller applies the dual-arm extended Jacobian matrix to stabilize the base attitude.The main contributions of this paper are as follows:(1)The compliant control method is adopted to achieve a precise friction control,which can reduce the target angular velocity steadily;(2)The dual-arm extended Jacobian matrix is applied to stabilize the base attitude without affecting the target capture task;(3)The detumbling strategy of dualarm space robot is designed considering base attitude stabilization,realizing coordinated planning of the base attitude and the arms.The strategy is verified by a dual-arm space robot with two 7-DOF(degrees of freedom)arms.Simulation results show that,target with a rotation velocity of 20(°)/s can be effectively controlled to stop within 30 s,and the final deflection of the base attitude is less than 0.15°without affecting the target capture task,verifying the correctness and effectiveness of the strategy.Except to the tumbling target capture task,the control strategy can also be applied to other typical on-orbit operation tasks such as space debris removal and spacecraft maintenance. 展开更多
关键词 Detumbling strategy Dual-arm space robot Free-floating base Friction control Tumbling target capturing
原文传递
Spatial Operator Algebra for Free-floating Space Robot Modeling and Simulation 被引量:10
16
作者 TIAN Zhixiang WU Hongtao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期635-640,共6页
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu... As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot. 展开更多
关键词 nonholonomic constrained spatial operator algebra DYNAMIC free-floating space robot
在线阅读 下载PDF
Analysis of reaction torque-based control of a redundant free-floating space robot 被引量:5
17
作者 Minghe JIN Cheng ZHOU +1 位作者 Yechao LIU Hong LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1765-1776,共12页
Owing to the dynamics coupling between a free-floating base and a manipulator, the non-stationary base of a space robot will face the issue of base disturbance due to a manipulator's motion. The reaction torque acted... Owing to the dynamics coupling between a free-floating base and a manipulator, the non-stationary base of a space robot will face the issue of base disturbance due to a manipulator's motion. The reaction torque acted on the satellite base's centroid is an important index to measure the satellite base's disturbance. In this paper, a comprehensive analysis of the reaction torque is made, and a novel way to derive the analytical form of the reaction torque is proposed. In addition,the reaction torque null-space is derived, in which the manipulator's joint motion is dynamically decoupled from the motion of the satellite base, and its novel expression demonstrates the equivalence between the reaction torque null-space and the reaction null-space. Furthermore, the reaction torque acted as an optimization index can be utilized to achieve satellite base disturbance minimization in the generalized Jacobian-based end-effector Cartesian path tracking task. Besides, supposing that the redundant degrees of freedom are abundant to achieve reaction torque-based active control, the reaction torque can be used to realize satellite base attitude control, that is, base attitude adjustment or maintenance. Moreover, because reaction torque-based control is a second-order control scheme, joint torque minimization can be regarded as the optimization task in reaction torque-based active or in-active control. A real-time simulation system of a 7-DOF space robot under Linux/RTAI is developed to verify and test the feasibility and reliability of the proposed ideas. Our extensive empirical results demonstrate that the corresponding analysis about the reaction torque is correct and the proposed methods are feasible. 展开更多
关键词 Attitude control Base disturbance Dynamics modeling Reaction torque Real time simulator space robot
原文传递
Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes 被引量:5
18
作者 Jia Yinghong Xu Shijie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期688-703,共16页
An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with th... An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane's equations. The controller for each link or the base is designed sep- arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a "lumped" matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen- eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method. Simulation results based on a three-link system verify the effectiveness of the proposed controller. 展开更多
关键词 Adaptation law Ball joint Control moment gyroscopes Sliding mode control space robot Trajectory tracking
原文传递
Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters 被引量:5
19
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期964-971,共8页
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co... Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme. 展开更多
关键词 space robot Actuator faults Uncertain parameters Effectiveness factor Fault-tolerant control
在线阅读 下载PDF
Impedance control of multi-arm space robot for the capture of non-cooperative targets 被引量:7
20
作者 GE Dongming SUN Guanghui +1 位作者 ZOU Yuanjie SHI Jixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1051-1061,共11页
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ... Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method. 展开更多
关键词 multi-arm space robot impedance control non-cooperative target CAPTURE
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部