交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法...交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法。首先,引入空间到深度卷积(SPD-Conv)对特征图进行下采样,有效避免小目标信息丢失,提高小目标敏感度。其次,基于加权双向特征金字塔网络(BiFPN)改进颈部网络,添加跨层连接以融合多尺度特征。之后,增加小目标检测层,增强小目标检测能力。最后,采用SIoU(Shape-aware Intersection over Union)损失函数,关注真实框与预测框的角度信息。实验结果表明,改进后的算法在中国交通标志检测数据集(CCTSDB2021)上的平均精度均值(mAP)达到83.5%,相较于原YOLOv5提升了7.2个百分点,检测速度满足实时性要求。展开更多
时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶...时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶段方法,一阶段方法实现的是特征层面而非像素层面的帧插值,其在推理速度和计算复杂度上都明显更胜一筹。一些现有的一阶段STVSR方法采用基于像素幻觉的特征插值,这幻化了像素,因此很难应对帧间快速运动物体的预测。为此,提出一种基于光流法的金字塔编码器-解码器网络来进行时间特征插值,实现快速的双向光流估计和更真实自然的纹理合成,在使得网络结构更高效的同时弥补了大运动对光流估计带来的不稳定性。另外,空间模块采用基于滑动窗口的局部传播和基于循环网络的双向传播来强化帧对齐,整个网络称为时间特征细化网络(temporal feature refinement netowrk,TFRnet)。为了进一步挖掘TFRnet的潜力,将空间超分辨率先于时间超分辨率(space-first),在几种广泛使用的数据基准和评估指标上的实验证明了所提出方法TFRnet-sf的出色性能,在总体峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)提升的同时,插入中间帧的PSNR和SSIM也得到提升,在一定程度上缓和了插入的中间帧与原有帧之间PSNR和SSIM差距过大的问题。展开更多
文摘交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法。首先,引入空间到深度卷积(SPD-Conv)对特征图进行下采样,有效避免小目标信息丢失,提高小目标敏感度。其次,基于加权双向特征金字塔网络(BiFPN)改进颈部网络,添加跨层连接以融合多尺度特征。之后,增加小目标检测层,增强小目标检测能力。最后,采用SIoU(Shape-aware Intersection over Union)损失函数,关注真实框与预测框的角度信息。实验结果表明,改进后的算法在中国交通标志检测数据集(CCTSDB2021)上的平均精度均值(mAP)达到83.5%,相较于原YOLOv5提升了7.2个百分点,检测速度满足实时性要求。
文摘时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶段方法,一阶段方法实现的是特征层面而非像素层面的帧插值,其在推理速度和计算复杂度上都明显更胜一筹。一些现有的一阶段STVSR方法采用基于像素幻觉的特征插值,这幻化了像素,因此很难应对帧间快速运动物体的预测。为此,提出一种基于光流法的金字塔编码器-解码器网络来进行时间特征插值,实现快速的双向光流估计和更真实自然的纹理合成,在使得网络结构更高效的同时弥补了大运动对光流估计带来的不稳定性。另外,空间模块采用基于滑动窗口的局部传播和基于循环网络的双向传播来强化帧对齐,整个网络称为时间特征细化网络(temporal feature refinement netowrk,TFRnet)。为了进一步挖掘TFRnet的潜力,将空间超分辨率先于时间超分辨率(space-first),在几种广泛使用的数据基准和评估指标上的实验证明了所提出方法TFRnet-sf的出色性能,在总体峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)提升的同时,插入中间帧的PSNR和SSIM也得到提升,在一定程度上缓和了插入的中间帧与原有帧之间PSNR和SSIM差距过大的问题。