期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Method for the Configuration Design of a Space Truss Deployable Mechanism and Its Application 被引量:1
1
作者 LI Bo 《International Journal of Plant Engineering and Management》 2010年第4期236-241,共6页
A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency m... A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer. 展开更多
关键词 space truss deployable mechanism metamorphic mechanism configuration change topology analysis
在线阅读 下载PDF
Quasi-static Deployment Simulation for Deployable Space Truss Structures
2
作者 陈务军 付功义 +1 位作者 何艳丽 董石麟 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第1期26-30,共5页
A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constra... A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient. 展开更多
关键词 deployable space truss quasi-static deployment simulation geometric constraint equation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部