Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and posit...Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and positioned.With the development of communication,remote-sensing,and navigation satellites,space-deployable structures have become cutting-edge research topics in space science and technology.This paper summarizes the current research status and development trend of spacedeployable structures in China,including large space mesh antennas,space solar arrays,and deployable structures and mechanisms for deep-space exploration.Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms,cable-membrane form-finding,dynamic analysis,reliable environmental adaptability analysis,and validation.Finally,future technology developments and trends are elucidated in the fields of mesh antennas,solar arrays,deployable mechanisms,and on-orbit adjustment,assembly,and construction.展开更多
A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of...A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiff-ness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software de-veloped by our research group agreed very well with available test data.展开更多
To meet the high power supply requirements of spacecraft,the research and development direction of ultra-large flexible solar array technology has been proposed based on increasing the power generation area of solar a...To meet the high power supply requirements of spacecraft,the research and development direction of ultra-large flexible solar array technology has been proposed based on increasing the power generation area of solar arrays and improving the irradiation intensity of incident light.By comparing and analyzing the development status of domestic and international Z-shaped folded solar arrays,fan-shaped flexible solar arrays,and roll-out flexible solar arrays,this paper highlights the advantages of flexible solar arrays,including compact stowed volume,lightweight design,high mass-to-power ratio,and re-deployable capabilities.Furthermore,it identifies key technical challenges faced by the roll-out flexible solar arrays in practical engineering applications providing insights to support future advancements in fully flexible solar array systems and their application in major aerospace missions.展开更多
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and act...Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.展开更多
基金financial support from the National Natural Science Foundation of China(11290154 and U20B2033)。
文摘Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and positioned.With the development of communication,remote-sensing,and navigation satellites,space-deployable structures have become cutting-edge research topics in space science and technology.This paper summarizes the current research status and development trend of spacedeployable structures in China,including large space mesh antennas,space solar arrays,and deployable structures and mechanisms for deep-space exploration.Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms,cable-membrane form-finding,dynamic analysis,reliable environmental adaptability analysis,and validation.Finally,future technology developments and trends are elucidated in the fields of mesh antennas,solar arrays,deployable mechanisms,and on-orbit adjustment,assembly,and construction.
基金Project (No. 863-2-4) supported by the National Basic Research Program (863) of China
文摘A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiff-ness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software de-veloped by our research group agreed very well with available test data.
文摘To meet the high power supply requirements of spacecraft,the research and development direction of ultra-large flexible solar array technology has been proposed based on increasing the power generation area of solar arrays and improving the irradiation intensity of incident light.By comparing and analyzing the development status of domestic and international Z-shaped folded solar arrays,fan-shaped flexible solar arrays,and roll-out flexible solar arrays,this paper highlights the advantages of flexible solar arrays,including compact stowed volume,lightweight design,high mass-to-power ratio,and re-deployable capabilities.Furthermore,it identifies key technical challenges faced by the roll-out flexible solar arrays in practical engineering applications providing insights to support future advancements in fully flexible solar array systems and their application in major aerospace missions.
基金supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151)
文摘Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.