We propose and numerically demonstrate an ultrafast real-time ordinary differential equation (ODE) computing unit in optical field based on a silicon microring resonator, operating in the critical coupling region as...We propose and numerically demonstrate an ultrafast real-time ordinary differential equation (ODE) computing unit in optical field based on a silicon microring resonator, operating in the critical coupling region as an optical temporal differentiator. As basic building blocks of a signal processing system, a subtractor and a splitter are included in the proposed structure. This scheme is featured with high speed, compact size and integration on a siliconon-insulator (SOl) wafer. The size of this computing unit is only 35 μm × 45 μm. In this paper, the performance of the proposed structure is theoretically studied and analyzed by numerical simulations.展开更多
基金Acknowledgements This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61077052 and 61125504), Foundation of Ministry of Education of China (No. 20110073110012), and Science and Technology Commission of Shanghai Municipality (No. 11530700400).
文摘We propose and numerically demonstrate an ultrafast real-time ordinary differential equation (ODE) computing unit in optical field based on a silicon microring resonator, operating in the critical coupling region as an optical temporal differentiator. As basic building blocks of a signal processing system, a subtractor and a splitter are included in the proposed structure. This scheme is featured with high speed, compact size and integration on a siliconon-insulator (SOl) wafer. The size of this computing unit is only 35 μm × 45 μm. In this paper, the performance of the proposed structure is theoretically studied and analyzed by numerical simulations.