The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative...The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative weights on the observed data using an optimized Akaike' s Bayesian Information Criterion (ABIC). The inversion generated the source parameters. Strike, dip and slip were 218°, 39° and 100. 8° ,respectively. A seismic moment (M0) was 2. 1 × 10^20 Nm with a moment magnitude (Mw) of 6. 8, and a source duration was approximately 30 second. The rupture propagated along the dip direction, and the maximum slip occurred at the hypocenter. The maximum slip was approximately 2. 1 m, although this earthquake did not cause an apparent surface rupture. The energy was mainly released within 10 second. In addition, the Lushan earthquake was apparently related to the 2008 Wenchuan earthquake. However, the question of whether it was an aftershock of the Wenchuan earthquake requires further study.展开更多
plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tenso...plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.展开更多
Several strong earthquakes occurred in the regions of Batang and Xiaojin of Sichuan Province in 1989. This paper uses broadband waveform data from GDSN, by the forward trial-and-error modeling for multiple subevent, i...Several strong earthquakes occurred in the regions of Batang and Xiaojin of Sichuan Province in 1989. This paper uses broadband waveform data from GDSN, by the forward trial-and-error modeling for multiple subevent, in terms of analysis on quasi-source time function or qSTF of station, to study source rupture characteristics of these strong earthquakes and to discuss tectonic background of earthquake occurrence regions preliminarily.展开更多
According to the source mechanism of the main shock and the distribution feature of the aftershocks occurring in the southern Taiwan Straits on Sept. 16, 1994, in this paper the authors analysed the source rupture fea...According to the source mechanism of the main shock and the distribution feature of the aftershocks occurring in the southern Taiwan Straits on Sept. 16, 1994, in this paper the authors analysed the source rupture feature of the major earthquake, demonstrated that this seismic sequence possessed the charateristics of a large intraplate earthquake. And according to the seismotectonic background and the historical seismicity in the area, the authors clarified the active characteristics of the seismically active belts along northwestern direction and analysed preliminarily the earthquake circumstance in the southeastern coast of China.展开更多
South and north-dipping nodal planes from the U.S. Geological Survey moment tensor solution were used to invert global teleseismic body waves to reveal the source rupture process of the December 8, 2016, Mw6.0 Hutubi ...South and north-dipping nodal planes from the U.S. Geological Survey moment tensor solution were used to invert global teleseismic body waves to reveal the source rupture process of the December 8, 2016, Mw6.0 Hutubi earthquake. The results show that a compact pattern is the main feature of this event for only one main slip zone located at the hypocenter for both models, The slip distributions are dominated by a nearly pure-thrust fault, and there is no apparent surface rupture. The inversion revealed that the slip zone extends 10 km along strike and 12 km along dip. The released total seismic moment was about 9.0 -1017 Nm, corresponding to a magnitude of Mw6.0. It is difficult to solve for a best-fit rupture plane due to the sample slip pattern without obvious rupture directivity. This makes the far- field teleseismic data not sensitive enough to determine the fault geometric parameters. The source model of the reverse north-dipping plane fits well with the observed waveforms, and the results of the aftershock relocation outline a trend of north-dipping profiles, indicating the possibility of a reverse event. The inverted normal fault beneath the Qigu fold, interpreted by geological and seismic studies, may be the seismogenic fault for this reverse event.展开更多
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- q...Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- quake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The sec- ond stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.展开更多
In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populat...In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions.The simulation was conducted with a hybrid methodology,combining a stochastic high-frequency simulation with a low-frequency ground motion simulation,from the regional 1-D velocity structure model and the Wang WM et al.(2022)source rupture model,respectively.We found that the three-component waveforms simulated for specific stations matched the waveforms recorded at those stations,in terms of amplitude,duration,and frequency content.The validation results demonstrate the ability of the hybrid simulation method to reproduce the main characteristics of the observed ground motions for the 2021 Maduo earthquake over a broad frequency range.Our simulations suggest that the official map of macroseismic intensity tends to overestimate shaking by one intensity unit.Comparisons of simulations with empirical ground motion models indicate generally good consistency between the simulated and empirically predicted intensity measures.The high-frequency components of ground motions were found to be more prominent,while the low-frequency components were not,which is unexpected for large earthquakes.Our simulations provide valuable insight into the effects of source complexity on the level and variability of the resulting ground motions.The acceleration and velocity time histories and corresponding response spectra were provided for selected representative sites where no records were available.The simulated results have important implications for evaluating the performance of engineering structures in the epicentral regions of this earthquake and for estimating seismic hazards in the Tibetan regions where no strong ground motion records are available for large earthquakes.展开更多
基金jointly supported by the Director of the Foundation of the Institute of Seismology,China Earthquake Administration(IS201102643)the National Natural Science Foundation of China(41004020)
文摘The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative weights on the observed data using an optimized Akaike' s Bayesian Information Criterion (ABIC). The inversion generated the source parameters. Strike, dip and slip were 218°, 39° and 100. 8° ,respectively. A seismic moment (M0) was 2. 1 × 10^20 Nm with a moment magnitude (Mw) of 6. 8, and a source duration was approximately 30 second. The rupture propagated along the dip direction, and the maximum slip occurred at the hypocenter. The maximum slip was approximately 2. 1 m, although this earthquake did not cause an apparent surface rupture. The energy was mainly released within 10 second. In addition, the Lushan earthquake was apparently related to the 2008 Wenchuan earthquake. However, the question of whether it was an aftershock of the Wenchuan earthquake requires further study.
基金The Specialized Funds for National Key Basic Study (G1998040704), the Dual Project of China Earthquake Admini-stration (9691309020301) and National Natural Science Foundation of China (46764010).
文摘plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.
文摘Several strong earthquakes occurred in the regions of Batang and Xiaojin of Sichuan Province in 1989. This paper uses broadband waveform data from GDSN, by the forward trial-and-error modeling for multiple subevent, in terms of analysis on quasi-source time function or qSTF of station, to study source rupture characteristics of these strong earthquakes and to discuss tectonic background of earthquake occurrence regions preliminarily.
文摘According to the source mechanism of the main shock and the distribution feature of the aftershocks occurring in the southern Taiwan Straits on Sept. 16, 1994, in this paper the authors analysed the source rupture feature of the major earthquake, demonstrated that this seismic sequence possessed the charateristics of a large intraplate earthquake. And according to the seismotectonic background and the historical seismicity in the area, the authors clarified the active characteristics of the seismically active belts along northwestern direction and analysed preliminarily the earthquake circumstance in the southeastern coast of China.
基金supported by the Director Foundation of Institute of Seismology, CEA (Grant Number: IS201326127)the National Natural Science Foundation of China (Grant Numbers: 41404016, 41474097)
文摘South and north-dipping nodal planes from the U.S. Geological Survey moment tensor solution were used to invert global teleseismic body waves to reveal the source rupture process of the December 8, 2016, Mw6.0 Hutubi earthquake. The results show that a compact pattern is the main feature of this event for only one main slip zone located at the hypocenter for both models, The slip distributions are dominated by a nearly pure-thrust fault, and there is no apparent surface rupture. The inversion revealed that the slip zone extends 10 km along strike and 12 km along dip. The released total seismic moment was about 9.0 -1017 Nm, corresponding to a magnitude of Mw6.0. It is difficult to solve for a best-fit rupture plane due to the sample slip pattern without obvious rupture directivity. This makes the far- field teleseismic data not sensitive enough to determine the fault geometric parameters. The source model of the reverse north-dipping plane fits well with the observed waveforms, and the results of the aftershock relocation outline a trend of north-dipping profiles, indicating the possibility of a reverse event. The inverted normal fault beneath the Qigu fold, interpreted by geological and seismic studies, may be the seismogenic fault for this reverse event.
基金Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seis- mic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.
文摘Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain MS=8.1 (MW=7.8) earth- quake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The sec- ond stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.
基金Financial support for this study was provided by the National Key Research and Development Project(No.2020YFA0710603)the Special Fund of the Institute Geophysics,China Earthquake Administration(No.DQJB22B27).
文摘In this study,the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions.The simulation was conducted with a hybrid methodology,combining a stochastic high-frequency simulation with a low-frequency ground motion simulation,from the regional 1-D velocity structure model and the Wang WM et al.(2022)source rupture model,respectively.We found that the three-component waveforms simulated for specific stations matched the waveforms recorded at those stations,in terms of amplitude,duration,and frequency content.The validation results demonstrate the ability of the hybrid simulation method to reproduce the main characteristics of the observed ground motions for the 2021 Maduo earthquake over a broad frequency range.Our simulations suggest that the official map of macroseismic intensity tends to overestimate shaking by one intensity unit.Comparisons of simulations with empirical ground motion models indicate generally good consistency between the simulated and empirically predicted intensity measures.The high-frequency components of ground motions were found to be more prominent,while the low-frequency components were not,which is unexpected for large earthquakes.Our simulations provide valuable insight into the effects of source complexity on the level and variability of the resulting ground motions.The acceleration and velocity time histories and corresponding response spectra were provided for selected representative sites where no records were available.The simulated results have important implications for evaluating the performance of engineering structures in the epicentral regions of this earthquake and for estimating seismic hazards in the Tibetan regions where no strong ground motion records are available for large earthquakes.