期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density 被引量:16
1
作者 CAO Yu-jun WANG Li-chun +2 位作者 GU Wan-rong WANG Yong-jun ZHANG Jun-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期494-510,共17页
To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year fi... To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain. 展开更多
关键词 different planting densities leaf source reduction canopy photosynthetic matter production post-silking N uptake grain N accumulation
在线阅读 下载PDF
Comprehensive Waste Minimization Study at an Industrial Battery Manufacturing Plant in Ohio, USA
2
作者 M. Franchetti 《Journal of Environmental Science and Engineering》 2011年第1期78-87,共10页
Industrial battery manufacturing facilities generate large quantities of hazardous waste, which must be properly treated before it can be disposed. Reducing the quantities of these waste streams can significantly redu... Industrial battery manufacturing facilities generate large quantities of hazardous waste, which must be properly treated before it can be disposed. Reducing the quantities of these waste streams can significantly reduce the cost of treatment and lead to competitive advantages. Waste minimization at these facilities is beneficial for the stakeholders and the environment. The quantities of hazardous waste can be minimized by upgrading the facility's technology or substituting hazardous substances, which are used in the battery manufacturing process, with more environmentally friendly options. Separation of waste streams will allow for additional reuse opportunities and revenue generation from the sale of these materials, which will enhance the financial performance of the facility. This paper provides a case study of comprehensive waste minimization in a battery manufacturing plant in Ohio, USA. Source reduction, recovery, and recycling methods are taken into account with consideration given to economic impacts. The goal of the study was to develop an understanding of the facility's waste generating processes, to suggest methods to reduce to the waste generation and finally to select an appropriate waste minimization option to suggest the facility's management team. Some of the suggested methods are currently being practiced while others are at the initial stage of development. 展开更多
关键词 Battery manufacturing plant waste minimization source reduction recovery recycling life cycle assessment.
在线阅读 下载PDF
Paving the way toward soil safety and health:current status,challenges,and potential solutions
3
作者 Chiheng Chu Lizhong Zhu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第6期63-73,共11页
Soil is a non-renewable resource,providing a majority of the world’s food and fiber while serving as a vital carbon reservoir.However,the health of soil faces global threats from human activities,particularly widespr... Soil is a non-renewable resource,providing a majority of the world’s food and fiber while serving as a vital carbon reservoir.However,the health of soil faces global threats from human activities,particularly widespread contamination by industrial chemicals.Existing physical,chemical,and biological remediation approaches encounter challenges in preserving soil structure and function throughout the remediation process,as well as addressing the complexities of soil contamination on a regional scale.Viable solutions encompass monitoring and simulating soil processes,with a focus on utilizing big data to bridge micro-scale and macro-scale processes.Additionally,reducing pollutant emissions to soil is paramount due to the significant challenges associated with removing contaminants once they have entered the soil,coupled with the high economic costs of remediation.Further,it is imperative to implement advanced remediation technologies,such as monitored natural attenuation,and embrace holistic soil management approaches that involve regulatory frameworks,soil health indicators,and soil safety monitoring platforms.Safeguarding the enduring health and resilience of soils necessitates a blend of interdisciplinary research,technological innovation,and collaborative initiatives. 展开更多
关键词 Soil safety and health source emission reduction Process monitoring and simulation Green remediation technology Soil health management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部