期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Characterization and source apportionment of volatile organic compounds in Hong Kong:A 5-year study for three different archetypical sites 被引量:2
1
作者 Yuchen Mai Vincent Cheung +5 位作者 Peter K.K.Louie Kenneth Leung Jimmy C.H.Fung Alexis K.H.Lau Donald R.B.lake Dasa Gu 《Journal of Environmental Sciences》 2025年第5期424-440,共17页
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ... Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas. 展开更多
关键词 Volatile organic compounds Positive matrix factorization source apportionment Ozone formation
原文传递
Impact of coking plant to heavy metal characteristics in groundwater of surrounding areas:Spatial distribution,source apportionment and risk assessments 被引量:1
2
作者 Congqing Wang Wanjun Wang +5 位作者 ChaoWang Shixing Ren Yingjun Wu Meicheng Wen Guiying Li Taicheng An 《Journal of Environmental Sciences》 2025年第3期688-698,共11页
Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution character... Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant.Nine HMs including Fe,Zn,Mo,As,Cu,Ni,Cr,Pb and Cd were analyzed.The average concentration of total HMswas higher in the nearby area(244.27μg/L)than that of remote area away the coking plant(89.15μg/L).The spatial distribution of pollution indices including heavy metal pollution index(HPI),Nemerow index(NI)and contamination degree(CD),all demonstrated higher values at the nearby residential areas,suggesting coking activity could significantly impact the HMs distribution characteristics.Four sources of HMs were identified by Positive Matrix Factorization(PMF)model,which indicated coal washing and coking emission were the dominant sources,accounted for 40.4%,and 31.0%,respectively.Oral ingestionwas found to be the dominant exposure pathway with higher exposure dose to children than adults.Hazard quotient(HQ)values were below 1.0,suggesting negligible non-carcinogenic health risks,while potential carcinogenic risks were from Pb and Ni with cancer risk(CR)values>10−6.Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters.This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater,thus facilitating the implement of HMs regulation in coking industries. 展开更多
关键词 Coking industry Heavy metal GROUNDWATER Spatial distribution source apportionment Monte Carlo simulation
原文传递
Source apportionment of PM_(2.5) using dispersion normalized positive matrix factorization(DN-PMF)in Beijing and Baoding,China
3
作者 Ilhan Ryoo Taeyeon Kim +6 位作者 Jiwon Ryu Yeonseung Cheong Kwang-joo Moon Kwon-ho Jeon Philip K.Hopke Seung-Muk Yi Jieun Park 《Journal of Environmental Sciences》 2025年第9期395-408,共14页
Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were freque... Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities. 展开更多
关键词 source apportionment Dispersion normalized positive matrix factorization Adjacent cities Inter-city impact source location Heating season Air quality management
原文传递
Source apportionment of black carbon using an advanced Aethalometer model in a typical industrial city of China
4
作者 Xingxing Fan Sihang Ye +7 位作者 Huang Zheng Bin Han Guotao Zhang Zhensen Zheng Xueyan Zhao Shaofei Kong Xiaoli Wang Wen Yang 《Journal of Environmental Sciences》 2025年第5期42-53,共12页
Black carbon(BC)aerosol can lead to adverse health effects and drive climate change;therefore,the characteristic research and identification of BC sources are essential for lowering emissions.In this study,equivalent ... Black carbon(BC)aerosol can lead to adverse health effects and drive climate change;therefore,the characteristic research and identification of BC sources are essential for lowering emissions.In this study,equivalent black carbon(eBC)measurement was performed using a seven-wavelength Aethalometer(AE33)at an urban site in a typical industrial city(Zibo)of Northern China for the first time.The monitoring was performed from February 2021 to January 2022.The mass absorption cross-section(MAC)of AE33 was optimised using the online elemental carbon(EC)data,and eBC was corrected using the MAC.The corrected annual BC concentration was 1.72±1.18μg/m^(3).The diurnal variation of BC depicted a bimodal distribution.Furthermore,the BC concentration on weekends was 18%lower than on weekdays.The diurnal variation and weekend effect reflect the critical contributions of traffic emission to BC concentration.The source apportionment of BC was calculated by a constraining Aethalometer model,which restricted theÅngstrom exponent using the online potassium ions.The results revealed that BC was not significantly affected by biomass burning(BC_(bb))in Zibo.The relative contribution of BC_(bb)was higher in winter than in other seasons.The daily morning peak of BC was primarily influenced by traffic sources,whereas the contribution of biomass burning increased after 17:00 in the evening peak.Our findings suggest that it is more important to control fossil fuel sources for BC emission reduction in Zibo,while it is necessary to strengthen the control of biomass combustion sources in winter. 展开更多
关键词 Black carbon(BC) AETHALOMETER AbsorptionÅngstrom exponent(AAE) Aethalometer model Fossil fuels Biomass burning source apportionment
原文传递
Water quality analysis and source apportionment in estuaries along the coast of the Bohai Sea,North China
5
作者 Guanghong WU Dan YE Wei LUO 《Journal of Oceanology and Limnology》 2025年第1期73-89,共17页
High-dimensional data(a dataset with many features)were collected from 64 sampling sites to analyze the water quality in estuaries along the coast of the Bohai Sea,North China.The twenty-five water quality parameters ... High-dimensional data(a dataset with many features)were collected from 64 sampling sites to analyze the water quality in estuaries along the coast of the Bohai Sea,North China.The twenty-five water quality parameters analyzed were collected monthly from January 2021 to December 2021.Multivariate statistical techniques,such as the absolute principal component score-multiple linear regression model(APCS-MLR),correlation analysis,and analysis of variance were used to identify and quantify the potential sources or factors affecting water quality and to analyze the spatial-temporal variation in water quality.The water quality indices(WQIs),ranging from 67.96 to 70.67,showed that the water quality was at an intermediate level in the estuaries during both the flood and nonflood seasons.The concentrations of total phosphorus(TP),ammonia N(AN),and organic pollutants were greater in the Haihe River Basin than in the Liaohe River and Huanghe-Huaihe River Basins.The concentration of total nitrogen(TN)in the Haihe River Basin was lower than that in the Liaohe River and Huanghe-Huaihe River Basins.Heavy metal concentrations in the Liaohe River Basin were greater than those in the Haihe River and Huanghe-Huaihe River Basins.The annual mean concentrations of AN in the estuaries of the Haihe,Liaohe,and Huanghe(Yellow)rivers exhibited significant decreasing trends from 2013 to 2022,but no significant decreasing trends were found for permanganate index(COD_(Mn))or the TP.The concentrations of TN and AN were lower in the flood season than in the nonflood season,and the TP concentration was greater in the flood season than in the nonflood season.However,the concentrations of organic pollutants did not exhibit significant differences.Domestic sewage and industrial wastewater,substance exchange between air and water,nonpoint sources from rural and urban areas,and aquaculture wastewater were the major sources or factors responsible for water pollution in the estuaries. 展开更多
关键词 water quality spatial-temporal variation source apportionment absolute principal component score-multiple linear regression ESTUARY Bohai Sea
在线阅读 下载PDF
Ensemble source apportionment of particulate matter and volatile organic compounds and quantifying ensemble source impacts on ozone
6
作者 Weiqing Liang Zhenyu Wang +4 位作者 Dongheng Zhao Jinxing Liu Tong Ma Yinchang Feng Guoliang Shi 《Journal of Environmental Sciences》 2025年第11期534-545,共12页
Serious fine particulate matter(PM_(2.5))pollution and rapidly increasing of ground-level ozone(O_(3))concentrations are concern issues in China.To achieve the comprehensive control of PM_(2.5)-O_(3) composite air pol... Serious fine particulate matter(PM_(2.5))pollution and rapidly increasing of ground-level ozone(O_(3))concentrations are concern issues in China.To achieve the comprehensive control of PM_(2.5)-O_(3) composite air pollution,exploring the common sources of PM_(2.5) and VOCs is essential.However,previous researches most carried out either PM_(2.5) or VOCs source appointment.In this study,we applied the ensemble source apportionment method to explore the impacts of common sources on PM_(2.5)-VOCs.Subsequently,we obtained the ensemble source impacts on O_(3) combining the extracted VOCs source profile and ozone formation potential.We found that the focus of environmentalmanagement and source control should be varied accordingly for different pollutants.Vehicle emission was the largest contributor(41%)to PM_(2.5)-VOCs,while industrial emission was the main common source(51%)to O_(3).The result showed that the O_(3) production rate is not only related to the VOCs emission,but also to the reactivity of VOCs.In addition,sensitivity tests revealed that temperature was the main factor affecting O_(3) formation.The study provides a framework to explore the common sources impact on PM_(2.5) and VOCs,which is benefit to address both PM_(2.5) and O_(3) mitigations. 展开更多
关键词 Ensemble source apportionment Particulate matter Volatile organic compounds OZONE Sensitivity test
原文传递
Pollution characteristics and quantitative source apportionment of soil heavy metals using PMF and APCS-MLR models in an industrial park in Northwest China
7
作者 PAN Zhuo BAI Yiru +3 位作者 GUO Jianlin MA Xiaowen MA Ling WANG Youqi 《Journal of Mountain Science》 2025年第9期3183-3199,共17页
Soils in typical coal industrial areas are often enriched with heavy metals.In the Ningdong industrial park of Northwest China,rapid economic development and pollutant emissions have endangered the surrounding soil en... Soils in typical coal industrial areas are often enriched with heavy metals.In the Ningdong industrial park of Northwest China,rapid economic development and pollutant emissions have endangered the surrounding soil environment.Understanding the spatial distribution,hazards,and sources of heavy metals is crucial to mitigate their contamination in soil.The intense industrial activities in the region lead to complex and diverse origins of heavy metals,making single-source apportionment methods inadequate.In this study,we methodically collected 95 soil samples from a coal-electricity production base in the Ningdong industrial park,and determined the concentrations of Cu,Pb,Cd,Cr,As and Hg.It is found that the concentrations of Cu,Pb,Cd,Cr,As and Hg are 1.29 to 18.45 times higher than the background values.Comprehensive pollution indices indicated that 89.47%of the samples were severely polluted,with Cd and Hg posing the highest ecological risks.Positive Matrix Factorisation and Absolute Principal Component Score-Multiple Linear Regression models identified industrial sources,coal processing,traffic-coal combustion,and mining as primary contributors.Both models yielded similar results,with industrial and coal-related activities being dominant.Heavy metal concentrations were significantly higher in the northwestern and southeastern areas compared to the central region,closely associated with industrial and mining activities.These findings highlight the importance of targeted prevention and management strategies for heavy metal contamination in industrial parks. 展开更多
关键词 Receptor-orientated model Potential ecological risk Spatial distribution source apportionment Soil heavy metals
原文传递
Analysis of aerosol chemical components and source apportionment during a long-lasting haze event in the Yangtze River Delta,China
8
作者 Zhizhen Peng Honglei Wang +4 位作者 Minquan Zhang Yinglong Zhang Li Li Yifei Li Zelin Ao 《Journal of Environmental Sciences》 2025年第10期14-29,共16页
Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical... Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical components and sources of fine particulate matter(PM2.5)under different pollution levels were comparatively analyzed using PMF(Positive Matrix Factorization)and backward trajectory analysis.SNA(NO_(3)^(-),NH_(4)^(+),SO_(4)^(2-))was found to be the primary chemical component of PM2.5,making up 63.6%(clean days)to 69.7%(heavy pollution)of it.The NO_(3)^(-)concentration was 3.14(clean days)to 6.01(heavy pollution)times higher than that of SO_(4)^(2-).NO_(3)^(-),POC,Fe,Mn,Al concentrations increased,while SOC,EC,crustal elements(Ca,Si)and other water-soluble ions(WSIs)concentrations decreased as the pollution level increased.The contribution of secondary inorganics and biomass-burning emissions and industrial and ship emissions increased significantly as the pollution level increased,which accounted for 40.3%and 36.7%,respectively,in the heavy pollution stage.The contribution of traffic sources decreases gradually with increasing pollution levels,accounting for only 59.1%of the light pollution stage in the heavy pollution stage.PM_(2.5) and its main chemical components showed similar potential source distribution,located in the northwest(Fuyang,Huainan,Nanjing),south(Taizhou,Lishui,Jiande)and north(Taizhou,Yancheng).However,distinct transport routes were observed under the different air quality levels.During the heavy pollution period,the polluted air masses primarily came from the harbor regions,whereas during the light pollution period they were transported from the southeast(Taizhou)and the North China Plain. 展开更多
关键词 Yangtze River Delta region PM_(2.5)chemical components Diurnal variation source apportionment Potential source analysis
原文传递
Source apportionment of PM_(2.5)using PMF combined online bulk and single-particle measurements:Contribution of fireworks and biomass burning 被引量:4
9
作者 Yanjing Zhang Wenshuai Li +4 位作者 Lei Li Mei Li Zhen Zhou Jianzhen Yu Yang Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期325-336,共12页
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,... Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF. 展开更多
关键词 source apportionment PMF Online bulk measurements Single particle analysis FIREWORKS Biomass burning
原文传递
Pollution characteristics and quantitative source apportionment of heavy metals within a zinc smelting site by GIS-based PMF and APCS-MLR models 被引量:3
10
作者 Huagang Lv Zhihuang Lu +6 位作者 Guangxuan Fu Sifang Lv Jun Jiang Yi Xie Xinghua Luo Jiaqing Zeng Shengguo Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期100-112,共13页
The abandoned smelters present a substantial pollution threat to the nearby soil and groundwater.In this study,63 surface soil samples were collected from a zinc smelter to quantitatively describe the pollution charac... The abandoned smelters present a substantial pollution threat to the nearby soil and groundwater.In this study,63 surface soil samples were collected from a zinc smelter to quantitatively describe the pollution characteristics,ecological risks,and source apportionment of heavy metal(loid)s(HMs).The results revealed that the average contents of Zn,Cd,Pb,As,and Hg were 0.4,12.2,3.3,5.3,and 12.7 times higher than the risk screening values of the construction sites,respectively.Notably,the smelter was accumulated heavily with Cd and Hg,and the contribution of Cd(0.38)and Hg(0.53)to ecological risk was 91.58%.ZZ3 and ZZ7 were the most polluted workshops,accounting for 25.7%and 35.0%of the pollution load and ecological risk,respectively.The influence of soil parent materials on pollution was minor compared to various workshops within the smelter.Combined with PMF,APCS-MLR and GIS analysis,four sources of HMs were identified:P1(25.5%)and A3(18.4%)were atmospheric deposition from the electric defogging workshop and surface runoff from the smelter;P2(32.7%)and A2(20.9%)were surface runoff of As-Pb foul acid;P3(14.5%)and A4(49.8%)were atmospheric deposition from the leach slag drying workshop;P4(27.3%)and A1(10.8%)were the smelting process of zinc products.This paper described the distribution characteristics and specific sources of HMs in different process workshops,providing a new perspective for the precise remediation of the smelter by determining the priority control factors. 展开更多
关键词 Smelter site Heavy metal(loid)s source apportionment Positive matrix factorization Absolute principal component score-multiple linear regression
原文传递
Atmospheric VOCs in an industrial coking facility and the surrounding area:Characteristics,spatial distribution and source apportionment 被引量:2
11
作者 Meicheng Wen Weiqiang Deng +8 位作者 Jin Huang Shu Zhang Qinhao Lin ChaoWang Shengtao Ma Wanjun Wang Xin Zhang Guiying Li Taicheng An 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期660-670,共11页
Industrial coking facilities are an important emission source for volatile organic compounds(VOCs).This study analyzed the atmospheric VOC characteristics within an industrial coking facility and its surrounding envir... Industrial coking facilities are an important emission source for volatile organic compounds(VOCs).This study analyzed the atmospheric VOC characteristics within an industrial coking facility and its surrounding environment.Average concentrations of total VOCs(TVOCs)in the surrounding residential activity areas(R1 and R2),the coking facility(CF)and the control area(CA)were determined to be 138.5,47.8,550.0,and 15.0μg/m^(3),respectively.The cold drum process and coking and quenching areas within the coking facility were identified as the main polluting processes.The spatial variation in VOCs composition was analyzed,showing that VOCs in the coking facility and surrounding areas were mainly dominated by aromatic compounds such as BTX(benzene,toluene,and xylenes)and naphthalene,with concentrations being negatively correlated with the distance from the coking facility(p<0.01).The sources of VOCs in different functional areas across the monitoring area were analyzed,finding that coking emissions accounted for 73.5%,33.3% and 27.7% of TVOCs in CF,R1 and R2,respectively.These results demonstrated that coking emissions had a significant impact on VOC concentrations in the areas surrounding coking facility.This study evaluates the spatial variation in exposure to VOCs,providing important information for the influence of VOCs concentration posed by coking facility to surrounding residents and the development of strategies for VOC abatement. 展开更多
关键词 Coking facility Volatile organic compounds Emission inventory Spatial distribution source apportionment
原文传递
Pollution characteristics and source apportionment of heavy metal(loid)s in soil and groundwater of a retired industrial park 被引量:2
12
作者 Zijing Xiang Shijin Wu +2 位作者 Lizhong Zhu Kun Yang Daohui Lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第9期23-34,共12页
Heavy metal(loid)s(HMs)pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization.Here,soil and groundwater were sampled from a retired industrial park to inv... Heavy metal(loid)s(HMs)pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization.Here,soil and groundwater were sampled from a retired industrial park to investigate the pollution characteristics of HMs.Results show that Ni,Pb,Cr,Zn,Cd,and Cu were the typical HMs in the soil.Source analysis with the positive matrix factorization model indicates that HMs in the topsoil stemmed from industrial activities,traffic emission,and natural source,and the groundwater HMs originated from industrial activities,groundwater-soil interaction,groundwater-rock interaction,and atmosphere deposition.The sequential extraction of soil HMs reveals that As and Hg were mainly distributed in the residue fraction,while Ni,Pb,Cr,Zn,Cd,and Cu mainly existed in the mobile fraction.Most HMs either in the total concentration or in the bioavailable fraction preferred to retain in soil as indicated by their high soil-water partitioning coefficients(K_(d)),and the K_(d) values were correlated with soil pH,groundwater redox potential,and dissolved oxygen.The relative stable soil-groundwater circumstance and the low active fraction contents limited the vertical migration of soil HMs and their release to groundwater.These findings increase our knowledge about HMs pollution characteristics of traditional industrial parks and provide a protocol for HMs pollution scrutinizing in large zones. 展开更多
关键词 Heavy metal(loid)s Industrial park source apportionment Chemical fraction Soil-groundwater partitioning
原文传递
Source apportionment and specific-source-site risk of quinolone antibiotics for effluent-receiving urban rivers and groundwater in a city, China 被引量:1
13
作者 Yu Zhao Yuanmeng Song +4 位作者 Lulu Zhang Bo Zhao Mengqi Lu Jiansheng Cui Wenzhong Tang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期185-198,共14页
There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs... There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs)and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021.For ERURs,8 out of 13 target quinolone antibiotics(QNs)were detected,and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02–2,476 ng/L,respectively.For groundwater,all target QNs were detected,and the total QNs concentration was 1.09–23.03 ng/L for December and 4.54–170.3 ng/L for April.The distribution of QNs was dissimilar between ERURs and groundwater.Most QN concentrations were weakly correlated with land use types in the system.The results of a positive matrix factorization model(PMF)indicated four potential sources of QNs in both ERURs and groundwater,and WWTP effluents were the main source of QNs.From December to April,the contribution of WWTP effluents and agricultural emissions increased,while livestock activities decreased.Singular value decomposition(SVD)results showed that the spatial variation of most QNs was mainly contributed by sites downstream(7.09%-88.86%)of ERURs.Then,a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient(SRQ),and the SRQ for QNs was at high level,especially for the sites downstream of WWTPs.Regarding temporal variation,the SRQ for WWTP effluents,aquaculture,and agricultural emissions increased.Therefore,in order to control the antibiotic pollution,more attention should be paid to WWTP effluents,aquaculture,and agricultural emission sources for the benefit of sites downstream of WWTPs. 展开更多
关键词 source apportionment Singular value decomposition Positive matrix factorization model Quinolone antibiotics(QNs) Specific-source-site risk quotient(SRQ) WWTP effluents
原文传递
Contamination assessment,source apportionment and associated health risks of PTEs in agricultural soil under five land-use patterns in Sanya,China
14
作者 Jian-zhou Yang Yan-gang Fu +6 位作者 Qiu-li Gong Sheng-ming Ma Jing-jing Gong Jian-weng Gao Zhen-liang Wang Yong-wen Cai Shi-xin Tang 《China Geology》 CAS CSCD 2024年第3期469-479,共11页
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo... To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population. 展开更多
关键词 Potentially toxic trace elements(PTEs) SOILS Land-use Geo-accumulation index(Igeo) Hazard quotient(HQ) Total carcinogenic risk index(TR) source apportionment Health risk Agricutural geological survey engineering
在线阅读 下载PDF
Temporal and Spatial Distribution of DIN and DIP Concentrations and Source Apportionment Along the Bohai Sea of China During 2015-2022
15
作者 ZHANG Xinjie TIAN Chongguo +3 位作者 SUN Zeyu YIN Xuehua SUN Rong WANG Juying 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1004-1016,共13页
The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China du... The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn. 展开更多
关键词 dissolved inorganic nitrogen(DIN) dissolved inorganic phosphorus(DIP) source apportionment positive matrix factoriza-tion(PMF)model the Bohai Sea of China
在线阅读 下载PDF
Improving photochemical indicators for attributing ozone sensitivities in source apportionment analysis
16
作者 Xiaohui Du Wei Tang +5 位作者 Zhongzhi Zhang Yang Yu Yang Li Ling Huang Greg Yarwood Fan Meng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第9期235-246,共12页
Comprehensive Air Quality Model with extensions(CAMx)-Decoupled Direct Method(DDM)simulations of first-order ozone(O_(3))sensitivity to nitrogen oxides(NO_(x))and volatile organic compounds(VOCs)emissions were perform... Comprehensive Air Quality Model with extensions(CAMx)-Decoupled Direct Method(DDM)simulations of first-order ozone(O_(3))sensitivity to nitrogen oxides(NO_(x))and volatile organic compounds(VOCs)emissions were performed and combined with modelled P_(H_(2)O_(2))/P_(HNO_(3))ratios to obtain a range of thresholds for determining O_(3)-sensitivity regimes for different areas of China.Utilising the new threshold ranges for photochemical indicators,the method for determining O_(3)formation in the Ozone Source Apportionment Technology(OSAT)module within CAMx was improved by a dynamically varied threshold of P_(H_(2)O_(2))/P_(HNO_(3))ratio.The O_(3)concentration contributions in the newly added transition regime were apportioned to NO_(x)and VOCs emissions in proportion to the relationship between the P_(H_(2)O_(2))/P_(HNO_(3))ratio and first-order O_(3)sensitivity.The source contributions of O_(3)concentrations from different emission sectors from June to September 2019 were compared using the original and improved CAMx-OSAT.The results showed that the O_(3)concentration contributions changed significantly in the NO_(x)-limited regime,with a maximum decrease of 21.89%,while the contributions increased by up to 7.57%in the VOC-limited regime,and were within 15μg/m^(3)in the transition regime.The modified OSAT module enabled a more sophisticated attribution of O_(3)to precursor emissions and may have far-reaching implications for informing O_(3)pollution control policy. 展开更多
关键词 O_(3) modeling O_(3)-sensitivity regimes Ozone source apportionment technology Photochemical indicators
原文传递
Long-term monitoring and source apportionment of PM_(2.5)/PM_(10) in Beijing,China 被引量:67
17
作者 WANG Hailin ZHUANG Yahui +4 位作者 WANG Ying SUN Yele YUAN Hui ZHUANG Guoshun HAO Zhengping 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1323-1327,共5页
During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) s... During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site,China,and in 2006,at a background site in Duolun (DL).The long-term monitoring data of elements,ions,and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements,nitrates,ammonium salts,and sulfates.These five major components accounted for 20%-80% of... 展开更多
关键词 PM2.5 PM10 MONITORING source apportionment
在线阅读 下载PDF
Characterization and Source Apportionment of Volatile Organic Compounds in Urban and Suburban Tianjin, China 被引量:20
18
作者 HAN Meng LU Xueqiang +2 位作者 ZHAO Chunsheng RAN Liang HAN Suqin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期439-444,共6页
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs... Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas. 展开更多
关键词 volatile organic compounds source apportionment positive matrix factorization OZONE MEGACITY
在线阅读 下载PDF
Secondary organic carbon quantification and source apportionment of PM_(10) in Kaifeng, China 被引量:27
19
作者 WU Lin FENG Yinchang +5 位作者 WU Jianhui ZHU Tan BI Xiaohui HAN Bo YANG Weihong YANG Zhiqiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第10期1353-1362,共10页
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC... During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model. 展开更多
关键词 PM10 source apportionment secondary organic carbon chemical mass balance
在线阅读 下载PDF
Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere 被引量:23
20
作者 Senlin Lu Rui Zhang +5 位作者 Zhenkun Yao Fei Yi Jingjing Ren Minghong Wu Man Feng Qingyue Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期882-890,共9页
Ambient coarse particles (diameter 1.8-10 μm), fine particles (diameter 0.1-1.8 μm), and ultrafine particles (diameter 〈 0.1 μm) in the atmosphere of the city of Shanghai were sampled during the summer of 20... Ambient coarse particles (diameter 1.8-10 μm), fine particles (diameter 0.1-1.8 μm), and ultrafine particles (diameter 〈 0.1 μm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41 μg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation. 展开更多
关键词 airborne size-resolved particles chemical elements distribution source apportionment
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部