Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob...Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan Distr...Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan District,Xilin Gol League,Inner Mongolia,China.It established 12 monitoring sites,conducted one-year monitoring,and collected 144 samples.The concentrations of nitrogen,phosphorus,and water-soluble ions in atmospheric wet sedimentation were measured.This study identified atmospheric precipitation types,revealed seasonal variations in nitrogen and phosphorus concentrations,assessed the contribution of atmosphericwet sedimentation to reservoirwater quality.Utilizing the airmass backward trajectory(HYSPLIT)model and PMF model,themain pollution sources were analyzed.The results were as follows.1)During the observation period,the atmospheric precipitation types were nitric acid rain in spring,sulfuric acid rain in winter,and mixed acid rain in summer and autumn.2)The monthly concentrations of nitrogen and phosphorus of various forms varied significantly,with NH_(4)^(+)-N peaking in spring,NO_(3)^(-)-N and DOP in autumn,and DIP and DON in summer.Annual pollution loads of atmospheric nitrogen and phosphorus precipitation into the reservoir were 35.77 and 4.17 t/a,respectively,severely impacting reservoir water quality.3)Precipitation was negatively correlated with TN concentration,particularly with the NO_(3)^(-)-N/TN ratio,and positively correlated with TP and DIP concen-trations.4)The analysis of pollution sources indicated that the sources of atmospheric nitrogen and phosphorus wet deposition pollution in the study area included agricultural,anthropogenic,dust,and coal sources,with contribution rates of 32.4%,25.6%,21.0%,and 21.0%,respectively.展开更多
Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due...Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due to its chemical complexity.In the study,1-year field samples of particulate matter 2.5(PM_(2.5))were collected fromJune 2022 to May 2023 to analyze the WSON concentration in PM_(2.5),and correlation analysis,positive matrix factor(PMF),and potential source contribution function(PSCF)modelswere employed to elucidate WSON source apportionment and transport pathways.The results revealed that the mean WSON concentrations reached 1.98±2.64μg/m^(3) with a mean WSON to water-soluble total nitrogen(WSTN)ratio of 21%.Further,WSON concentration exhibited a seasonal variation trend,with higher values in winter and lower in summer.Five sources were identified as contributors to WSON in PM_(2.5) within the reservoir area through a comprehensive analysis including correlation analysis,PSCF and concentration weighted trajectory(CWT),and PMF analyses.These sources were agricultural,dust,combustion,traffic,and industrial sources,of which agricultural source emerged as the primary contributor(76.69%).The atmosphere in the reservoir area were primarily influenced by the transport of northeastern air masses,local agricultural activities,industrial cities along the trajectory,and coastal regions,exerting significant influences on the concentration of WSON in the reservoir area.The findings of this study addressed the research gap concerning organic nitrogen in PM_(2.5) within the reservoir area,thereby offering a theoretical foundation and data support in controlling nitrogen pollution in the Danjiangkou Reservoir area.展开更多
The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated r...The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated result in modern physics.Neutrino oscillation plays an important role in many astrophysical observations.However,the interactions between the background classical sources with neutrinos are not often considered.In the present article,we show the effect of some classical sources,namely matter currents,electromagnetic waves,torsion,and gravitational waves on neutrino oscillation.It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation.展开更多
In the data transaction process within a data asset trading platform,quantifying the trustworthiness of data source nodes is challenging due to their numerous attributes and complex structures.To address this issue,a ...In the data transaction process within a data asset trading platform,quantifying the trustworthiness of data source nodes is challenging due to their numerous attributes and complex structures.To address this issue,a distributed data source trust assessment management framework,a trust quantification model,and a dynamic adjustment mechanism are proposed.Themodel integrates the Analytic Hierarchy Process(AHP)and Dempster-Shafer(D-S)evidence theory to determine attribute weights and calculate direct trust values,while the PageRank algorithm is employed to derive indirect trust values.Thedirect and indirect trust values are then combined to compute the comprehensive trust value of the data source.Furthermore,a dynamic adjustment mechanism is introduced to continuously update the comprehensive trust value based on historical assessment data.By leveraging the collaborative efforts of multiple nodes in the distributed network,the proposed framework enables a comprehensive,dynamic,and objective evaluation of data source trustworthiness.Extensive experimental analyses demonstrate that the trust quantification model effectively handles large-scale data source trust assessments,exhibiting both strong trust differentiation capability and high robustness.展开更多
To explore the multicenter characteristics of endocrine-like phthalate esters(PAEs)in household dust and propose effective control strategies for global indoor public health.An on-site observational investigation was ...To explore the multicenter characteristics of endocrine-like phthalate esters(PAEs)in household dust and propose effective control strategies for global indoor public health.An on-site observational investigation was conducted in nine Chinese cities from 2018 to 2019.A total of 246 household dust sampleswere collected and analyzed for ten PAE congeners using Gas Chromatography-Mass Spectrometry(GC-MS).Questionnaires were used to gather information on building conditions,indoor behaviors,and ventilation habits.In residential dust from the nine cities,the total concentrations of the ten PAE congeners(PAEs)ranged from 0.921 to 29097.297μg/g.Dicyclohexyl phthalate(DCHP)and di(2-ethylhexyl)phthalate(DEHP)were the dominant congeners inPAEs.Childhood exposure to PAEs through dust ingestion was four orders of magnitude higher than through inhalation,with a carcinogenic risk of 5.47×10^(−6) for DEHP exposure in household dust.HigherPAEs concentrations were associated with higher temperature,double glazing,wall paint usage,television and computer use,and indoor plant growth.This multicenter on-site investigation confirmed PAE pollution characteristics and uncovered the inacceptable risk of daily DEHP exposure in household dust under real living conditions.Effective mitigation measures based on household-related information,residential characteristics,decoration materials,and lifestyle should be taken to build a healthy household environment.展开更多
Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optim...Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.展开更多
The effects of a harmonically exciting monopole source on an infinitely long cylindrical cavity embedded entirely within a fluid-saturated poroelastic formation of infinite extent are examined theoretically.It is assu...The effects of a harmonically exciting monopole source on an infinitely long cylindrical cavity embedded entirely within a fluid-saturated poroelastic formation of infinite extent are examined theoretically.It is assumed that the source is located outside the cavity at a specified distance from the borehole axis.The magnitudes of the hoop and radial stresses beside the pore pressures exerted on the interface and inside the porous medium surrounding the borehole are calculated and discussed.Biot's poroelastic modeling along with three types of boundary conditions for the cylindrical interface including the ideal fluid,empty borehole,and rigid inclusion with a hard boundary is employed for the analysis.Utilizing a proper translational addition theorem for expressing the incident spherical wave in terms of cylindrical wave expansions,the proposed boundary conditions at the interface are satisfied.Stresses are formulated by means of wave potential functions in a three-dimensional(3D)manner.The effects of the frequency and the radial distance between the source and borehole on the induced stresses are examined for the first cylindrical modes over frequency spectra.Two permeability conditions for the interface and three types of soils for the porous formation are considered throughout the analysis.To give an overall outline of the study,a numerical example is presented.The results clearly indicate that the distance is a key parameter and has considerable effects on the induced stress values.In addition,the interface permeability condition and soil characteristics play an important role in determining the dynamic response of the borehole.Finally,the obtained results are compared with the relevant analyses existing in the literature for some limit cases,and good agreement is achieved.展开更多
In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(F...In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(Fe-N/C),which were used to activate peroxymonosulfate(PMS).The relationship between different small molecular carbon sources and the electronic structure was investigated.The characteristics of metal-carrier interaction in the Fe-N/C were clarified.As a result,there were significant differences in the degradation efficiency of catalysts prepared with different small molecular carbon sources,which was related to the types of active sites.Density functional theory(DFT)and experiments results showed that the catalyst rich in C-O-C and FeN_(x)exhibited better catalytic activity,which may be attributed to the higher adsorption energy for PMS.The main active species for catalytic degradation of ofloxacin were identified as sulfate radical(SO_(4)^(·-))and hydroxyl radical(^(·)OH)by electron paramagnetic resonance(EPR)spectra.The introduction of different small molecular carbon sources can significantly affect the distribution and electronic structure of active sites on the catalyst surface,thereby regulating the generation and migration of radicals.展开更多
Numerous studies documented the occurrence of organophosphate tri-esters(tri-OPEs)and di-esters(di-OPEs)in the environment.Little information is available on their occurrence in waste consumer products,reservoirs and ...Numerous studies documented the occurrence of organophosphate tri-esters(tri-OPEs)and di-esters(di-OPEs)in the environment.Little information is available on their occurrence in waste consumer products,reservoirs and sources of these chemicals.This study collected and analyzed 92 waste consumer products manufactured from diverse polymers,including polyurethane foam(PUF),polystyrene(PS),acrylonitrile butadiene styrene(ABS),polypropylene(PP),and polyethylene(PE)to obtain information on the occurrence and profiles of 16 tri-OPEs and 10 di-OPEs.Total concentrations of di-OPEs(18−370,000 ng/g,median 1,700 ng/g)were one order of magnitude lower than those of tri-OPEs(94−4,500,000 ng/g,median 5,400 ng/g).The concentrations of both tri-and di-OPEs in products made of PUF,PS,and ABS were orders of magnitude higher than those made of PP and PE.The compositional patterns of OPEs varied among different polymer types but were generally dominated by bisphenol A bis(diphenyl phosphate),triphenyl phosphate,tris(1-chloro-2-propyl)phosphate,di-phenyl phosphate(DPHP),and bis(2-ethylhexyl)phosphate.Two industrially applied di-OPEs(di-n-butyl phosphate and DPHP)exhibited higher levels than their respective tri-OPEs,contrary to their production volumes.Some non-industrially applied chlorinated di-OPEs were also detected,with concentrations up to 97,000 ng/g.These findings suggest that degradation of tri-OPEs during the manufacturing and use of products is an important source of di-OPEs.The mass inventories of tri-OPEs and di-OPEs in consumer products were estimated at 3,100 and 750 tons/year,respectively.This study highlights the importance of consumer products as emission sources of a broad suite of OPEs.展开更多
Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocar...For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocarbon and non-hydrocarbon gas compositions,stable carbon and hydrogen isotopes ratios of hydrocarbons,and noble gas isotope ratios.The gas samples in the Upper Permian reservoirs principally consist of alkane gas with a dryness ratio ranging from 127.9 to 1564.4.The carbon isotope ratio of methane(δ^(13)C_(1))was almost constant at-34.1 to-31.3‰,but the carbon isotope ratio of ethane(δ^(13)C2)varied from-36.6‰to-25.8‰.The hydrogen isotope ratio of methane(δ^2HC_(1))also displayed a wide range from-137‰to-127‰.The large variations in the dryness ratio,δ^(13)C_(2),andδ^2HC_(1)with almost constantδ^(13)C_(1)suggest the mixing of sapropelic and humic origins for hydrocarbon gases in these reservoirs.A high concentration of hydrogen sulfide(H_(2)S)originated from the thermochemical sulfate reduction(TSR),which was positively correlated withδ^(13)C_(1)(orδ^(13)C_(2))in individual gas fields.TSR alteredδ^(13)C_(1)(orδ^(13)C_(2))and resulted in the abnormal character of isotopic reversal in the individual samples.Theδ^(13)C_(1)(orδ^(13)C_(2))in most gas samples,independent of H_(2)S concentration,further displayed reversed carbon isotopes because of the mixture of thermogenic gases with various thermal maturity levels.The measured argon isotope ratio(^(40)Ar/^(36)Ar)varied from 310 to 1225,which suggests that the oldest 320 Ma source rock age corresponds to Permian shales.The analysis of the gas origin and the identification of primary source rock have made a significant contribution to further understanding the resource potential and distribution of natural gas in the Upper Permian,and have great implications for gas exploration in the eastern Sichuan Basin.展开更多
Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regiona...Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.展开更多
With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distributi...With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.展开更多
Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and ...Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and broader Asia.However,long-term TWSC characterization remains challenging due to limited observational data in this alpine region.Here,we integrate GRACE observations(2002-2020),ERA5-Land reanalysis,and GLDAS data to reconstruct TWSC using two methods:(1)the water balance method(PER)and(2)the component summation method(SS),applied to three input datasets(ERA5-Land,GLDAS,and their average,GLER).Comparative analysis reveals that the SS method applied to GL-ER yields the highest consistency with GRACE-derived TWSC.Using this optimal approach,we extend the analysis to 1951~2020,uncovering spatiotemporal TWSC patterns.Although annual TWSC trends appear negligible due to strong seasonality,we introduce the intra-year TWSC fluctuation(TWSCF)index to quantify cumulative variability.A significant(p<0.05)transition occurred in 1980,with TWSCF shifting from a declining trend(-0.39 mm/yr)to an increasing trend(0.56 mm/yr),primarily driven by soil moisture changes.However,Hurst exponent analysis suggests this upward trend may not persist.Drought and vegetation assessments indicate concurrent wetting and greening in the TRSR.TWSC correlates strongly with meteorological drought,acting as a reliable drought indicator while its linkage with vegetation dynamics suggests a potential contribution to greening.Our findings provide a robust framework for understanding long-term TWSC evolution and its hydrological-ecological interactions under climate change.展开更多
Inhalation of atmospheric PM_(2.5)can induce the generation of excessive reactive oxygen species(ROS)in human alveoli,triggering local and systemic inflammation,which can directly or indirectly result in respiratory a...Inhalation of atmospheric PM_(2.5)can induce the generation of excessive reactive oxygen species(ROS)in human alveoli,triggering local and systemic inflammation,which can directly or indirectly result in respiratory and cardiovascular diseases.In this study,we assessed the oxidative potential(OP)of fresh and O_(3)-aged PM_(2.5)particles from various urban and rural emission sources using the dithiothreitol(DTT)method.Our results revealed variations in the OP of fresh PM_(2.5)among different emission sources,with biomass burning sources exhibiting the highest OP,followed by industrial areas,vehicular emissions,cooking emissions,and suburban areas,respectively.Water-soluble organics and transition metals might potentially exert significant influence on particle OP.O_(3)aging notably decreased the OP of PM_(2.5)particles,possibly due to the oxidation of highly DTT-active components into low redox-active small molecules.Moreover,the evolution of OP in different PM_(2.5)components,including methanol-soluble and insoluble fractions,exhibited distinct responses to O_(3)aging for source-oriented PM_(2.5).Additionally,differences in chemical composition between fresh and aged PM_(2.5)were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions.This study systematically delineates variances in the toxic potential of fresh and O_(3)-aged PM_(2.5)from various anthropogenic sources.The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM_(2.5),as well as for formulating human health protection policies.展开更多
In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great con...In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.展开更多
Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion sou...Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.展开更多
基金supported by the Special Funds for Chengde national innovation demonstration area construction of science and technology special project sustainable development agenda(No.202104F001)the National Basic Research Program of China(No.2019YFC0408602).
文摘Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by Inner Mongolia Autonomous Region Department of Education Science and Technology Talent Project(No.NJYT22040)Inner Mongolia Agricultural University Young Teachers'Scientific Research Ability Promotion Project(No.BR220102)+4 种基金the National Natural Science Foundation of China(No.52260029)the National Key R&D Program(No.2019YFC0409204)Inner Mongolia Natural Science Foundation(No.2021MS04013)the Science and Technology Project of Inner Mongolia Autonomous Region(No.2023YFHH0060)Inner Mongolia AutonomousRegion Science and Technology Leading TalentTeam(No.2022LJRC0007).
文摘Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan District,Xilin Gol League,Inner Mongolia,China.It established 12 monitoring sites,conducted one-year monitoring,and collected 144 samples.The concentrations of nitrogen,phosphorus,and water-soluble ions in atmospheric wet sedimentation were measured.This study identified atmospheric precipitation types,revealed seasonal variations in nitrogen and phosphorus concentrations,assessed the contribution of atmosphericwet sedimentation to reservoirwater quality.Utilizing the airmass backward trajectory(HYSPLIT)model and PMF model,themain pollution sources were analyzed.The results were as follows.1)During the observation period,the atmospheric precipitation types were nitric acid rain in spring,sulfuric acid rain in winter,and mixed acid rain in summer and autumn.2)The monthly concentrations of nitrogen and phosphorus of various forms varied significantly,with NH_(4)^(+)-N peaking in spring,NO_(3)^(-)-N and DOP in autumn,and DIP and DON in summer.Annual pollution loads of atmospheric nitrogen and phosphorus precipitation into the reservoir were 35.77 and 4.17 t/a,respectively,severely impacting reservoir water quality.3)Precipitation was negatively correlated with TN concentration,particularly with the NO_(3)^(-)-N/TN ratio,and positively correlated with TP and DIP concen-trations.4)The analysis of pollution sources indicated that the sources of atmospheric nitrogen and phosphorus wet deposition pollution in the study area included agricultural,anthropogenic,dust,and coal sources,with contribution rates of 32.4%,25.6%,21.0%,and 21.0%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.U23A2016,U1704241,and 42007175).
文摘Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due to its chemical complexity.In the study,1-year field samples of particulate matter 2.5(PM_(2.5))were collected fromJune 2022 to May 2023 to analyze the WSON concentration in PM_(2.5),and correlation analysis,positive matrix factor(PMF),and potential source contribution function(PSCF)modelswere employed to elucidate WSON source apportionment and transport pathways.The results revealed that the mean WSON concentrations reached 1.98±2.64μg/m^(3) with a mean WSON to water-soluble total nitrogen(WSTN)ratio of 21%.Further,WSON concentration exhibited a seasonal variation trend,with higher values in winter and lower in summer.Five sources were identified as contributors to WSON in PM_(2.5) within the reservoir area through a comprehensive analysis including correlation analysis,PSCF and concentration weighted trajectory(CWT),and PMF analyses.These sources were agricultural,dust,combustion,traffic,and industrial sources,of which agricultural source emerged as the primary contributor(76.69%).The atmosphere in the reservoir area were primarily influenced by the transport of northeastern air masses,local agricultural activities,industrial cities along the trajectory,and coastal regions,exerting significant influences on the concentration of WSON in the reservoir area.The findings of this study addressed the research gap concerning organic nitrogen in PM_(2.5) within the reservoir area,thereby offering a theoretical foundation and data support in controlling nitrogen pollution in the Danjiangkou Reservoir area.
基金supported by the SERB-Core Research Grant(Project RD/0122-SERB000-044)。
文摘The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated result in modern physics.Neutrino oscillation plays an important role in many astrophysical observations.However,the interactions between the background classical sources with neutrinos are not often considered.In the present article,we show the effect of some classical sources,namely matter currents,electromagnetic waves,torsion,and gravitational waves on neutrino oscillation.It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation.
基金funded by Haikou Science and Technology Plan Project(2022-007),in part by key Laboratory of PK System Technologies Research of Hainan,China.
文摘In the data transaction process within a data asset trading platform,quantifying the trustworthiness of data source nodes is challenging due to their numerous attributes and complex structures.To address this issue,a distributed data source trust assessment management framework,a trust quantification model,and a dynamic adjustment mechanism are proposed.Themodel integrates the Analytic Hierarchy Process(AHP)and Dempster-Shafer(D-S)evidence theory to determine attribute weights and calculate direct trust values,while the PageRank algorithm is employed to derive indirect trust values.Thedirect and indirect trust values are then combined to compute the comprehensive trust value of the data source.Furthermore,a dynamic adjustment mechanism is introduced to continuously update the comprehensive trust value based on historical assessment data.By leveraging the collaborative efforts of multiple nodes in the distributed network,the proposed framework enables a comprehensive,dynamic,and objective evaluation of data source trustworthiness.Extensive experimental analyses demonstrate that the trust quantification model effectively handles large-scale data source trust assessments,exhibiting both strong trust differentiation capability and high robustness.
基金supported by the National Natural Science Foundation of China(No.21976169)the National Key Research and Development Program of China(No.2022YFC3702800).
文摘To explore the multicenter characteristics of endocrine-like phthalate esters(PAEs)in household dust and propose effective control strategies for global indoor public health.An on-site observational investigation was conducted in nine Chinese cities from 2018 to 2019.A total of 246 household dust sampleswere collected and analyzed for ten PAE congeners using Gas Chromatography-Mass Spectrometry(GC-MS).Questionnaires were used to gather information on building conditions,indoor behaviors,and ventilation habits.In residential dust from the nine cities,the total concentrations of the ten PAE congeners(PAEs)ranged from 0.921 to 29097.297μg/g.Dicyclohexyl phthalate(DCHP)and di(2-ethylhexyl)phthalate(DEHP)were the dominant congeners inPAEs.Childhood exposure to PAEs through dust ingestion was four orders of magnitude higher than through inhalation,with a carcinogenic risk of 5.47×10^(−6) for DEHP exposure in household dust.HigherPAEs concentrations were associated with higher temperature,double glazing,wall paint usage,television and computer use,and indoor plant growth.This multicenter on-site investigation confirmed PAE pollution characteristics and uncovered the inacceptable risk of daily DEHP exposure in household dust under real living conditions.Effective mitigation measures based on household-related information,residential characteristics,decoration materials,and lifestyle should be taken to build a healthy household environment.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)the National Natural Science Foundation of China(Grant No.62105366)。
文摘Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.
文摘The effects of a harmonically exciting monopole source on an infinitely long cylindrical cavity embedded entirely within a fluid-saturated poroelastic formation of infinite extent are examined theoretically.It is assumed that the source is located outside the cavity at a specified distance from the borehole axis.The magnitudes of the hoop and radial stresses beside the pore pressures exerted on the interface and inside the porous medium surrounding the borehole are calculated and discussed.Biot's poroelastic modeling along with three types of boundary conditions for the cylindrical interface including the ideal fluid,empty borehole,and rigid inclusion with a hard boundary is employed for the analysis.Utilizing a proper translational addition theorem for expressing the incident spherical wave in terms of cylindrical wave expansions,the proposed boundary conditions at the interface are satisfied.Stresses are formulated by means of wave potential functions in a three-dimensional(3D)manner.The effects of the frequency and the radial distance between the source and borehole on the induced stresses are examined for the first cylindrical modes over frequency spectra.Two permeability conditions for the interface and three types of soils for the porous formation are considered throughout the analysis.To give an overall outline of the study,a numerical example is presented.The results clearly indicate that the distance is a key parameter and has considerable effects on the induced stress values.In addition,the interface permeability condition and soil characteristics play an important role in determining the dynamic response of the borehole.Finally,the obtained results are compared with the relevant analyses existing in the literature for some limit cases,and good agreement is achieved.
基金supported by National Natural Science Foundation of China(Nos.52170086,52300056)Natural Science Foundation of Shandong Province(Nos.ZR2021ME013,ZR202211280298)。
文摘In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(Fe-N/C),which were used to activate peroxymonosulfate(PMS).The relationship between different small molecular carbon sources and the electronic structure was investigated.The characteristics of metal-carrier interaction in the Fe-N/C were clarified.As a result,there were significant differences in the degradation efficiency of catalysts prepared with different small molecular carbon sources,which was related to the types of active sites.Density functional theory(DFT)and experiments results showed that the catalyst rich in C-O-C and FeN_(x)exhibited better catalytic activity,which may be attributed to the higher adsorption energy for PMS.The main active species for catalytic degradation of ofloxacin were identified as sulfate radical(SO_(4)^(·-))and hydroxyl radical(^(·)OH)by electron paramagnetic resonance(EPR)spectra.The introduction of different small molecular carbon sources can significantly affect the distribution and electronic structure of active sites on the catalyst surface,thereby regulating the generation and migration of radicals.
基金supported by the National Key Research and Development Project of China(No.2020YFC1808201)the National Natural Science Foundation of China(No.U1906224).
文摘Numerous studies documented the occurrence of organophosphate tri-esters(tri-OPEs)and di-esters(di-OPEs)in the environment.Little information is available on their occurrence in waste consumer products,reservoirs and sources of these chemicals.This study collected and analyzed 92 waste consumer products manufactured from diverse polymers,including polyurethane foam(PUF),polystyrene(PS),acrylonitrile butadiene styrene(ABS),polypropylene(PP),and polyethylene(PE)to obtain information on the occurrence and profiles of 16 tri-OPEs and 10 di-OPEs.Total concentrations of di-OPEs(18−370,000 ng/g,median 1,700 ng/g)were one order of magnitude lower than those of tri-OPEs(94−4,500,000 ng/g,median 5,400 ng/g).The concentrations of both tri-and di-OPEs in products made of PUF,PS,and ABS were orders of magnitude higher than those made of PP and PE.The compositional patterns of OPEs varied among different polymer types but were generally dominated by bisphenol A bis(diphenyl phosphate),triphenyl phosphate,tris(1-chloro-2-propyl)phosphate,di-phenyl phosphate(DPHP),and bis(2-ethylhexyl)phosphate.Two industrially applied di-OPEs(di-n-butyl phosphate and DPHP)exhibited higher levels than their respective tri-OPEs,contrary to their production volumes.Some non-industrially applied chlorinated di-OPEs were also detected,with concentrations up to 97,000 ng/g.These findings suggest that degradation of tri-OPEs during the manufacturing and use of products is an important source of di-OPEs.The mass inventories of tri-OPEs and di-OPEs in consumer products were estimated at 3,100 and 750 tons/year,respectively.This study highlights the importance of consumer products as emission sources of a broad suite of OPEs.
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金supported by the National Natural Science Foundation of China(Nos.42072184 and 41702157)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance。
文摘For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocarbon and non-hydrocarbon gas compositions,stable carbon and hydrogen isotopes ratios of hydrocarbons,and noble gas isotope ratios.The gas samples in the Upper Permian reservoirs principally consist of alkane gas with a dryness ratio ranging from 127.9 to 1564.4.The carbon isotope ratio of methane(δ^(13)C_(1))was almost constant at-34.1 to-31.3‰,but the carbon isotope ratio of ethane(δ^(13)C2)varied from-36.6‰to-25.8‰.The hydrogen isotope ratio of methane(δ^2HC_(1))also displayed a wide range from-137‰to-127‰.The large variations in the dryness ratio,δ^(13)C_(2),andδ^2HC_(1)with almost constantδ^(13)C_(1)suggest the mixing of sapropelic and humic origins for hydrocarbon gases in these reservoirs.A high concentration of hydrogen sulfide(H_(2)S)originated from the thermochemical sulfate reduction(TSR),which was positively correlated withδ^(13)C_(1)(orδ^(13)C_(2))in individual gas fields.TSR alteredδ^(13)C_(1)(orδ^(13)C_(2))and resulted in the abnormal character of isotopic reversal in the individual samples.Theδ^(13)C_(1)(orδ^(13)C_(2))in most gas samples,independent of H_(2)S concentration,further displayed reversed carbon isotopes because of the mixture of thermogenic gases with various thermal maturity levels.The measured argon isotope ratio(^(40)Ar/^(36)Ar)varied from 310 to 1225,which suggests that the oldest 320 Ma source rock age corresponds to Permian shales.The analysis of the gas origin and the identification of primary source rock have made a significant contribution to further understanding the resource potential and distribution of natural gas in the Upper Permian,and have great implications for gas exploration in the eastern Sichuan Basin.
基金supported by the National Natural Science Foundation of China(42161007)the Innovation Foundation of Higher Education Institutions of Gansu Province(2021B-081)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112).
文摘Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Company(5205E0230001).
文摘With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.
基金funded by the Postdoctoral Research Startup Foundation of University of Jinan(Grant No.100389917).
文摘Climate change and anthropogenic activities have driven significant terrestrial water storage changes(TWSC)in the Three Rivers Source Region(TRSR),exerting profound impacts on freshwater availability across China and broader Asia.However,long-term TWSC characterization remains challenging due to limited observational data in this alpine region.Here,we integrate GRACE observations(2002-2020),ERA5-Land reanalysis,and GLDAS data to reconstruct TWSC using two methods:(1)the water balance method(PER)and(2)the component summation method(SS),applied to three input datasets(ERA5-Land,GLDAS,and their average,GLER).Comparative analysis reveals that the SS method applied to GL-ER yields the highest consistency with GRACE-derived TWSC.Using this optimal approach,we extend the analysis to 1951~2020,uncovering spatiotemporal TWSC patterns.Although annual TWSC trends appear negligible due to strong seasonality,we introduce the intra-year TWSC fluctuation(TWSCF)index to quantify cumulative variability.A significant(p<0.05)transition occurred in 1980,with TWSCF shifting from a declining trend(-0.39 mm/yr)to an increasing trend(0.56 mm/yr),primarily driven by soil moisture changes.However,Hurst exponent analysis suggests this upward trend may not persist.Drought and vegetation assessments indicate concurrent wetting and greening in the TRSR.TWSC correlates strongly with meteorological drought,acting as a reliable drought indicator while its linkage with vegetation dynamics suggests a potential contribution to greening.Our findings provide a robust framework for understanding long-term TWSC evolution and its hydrological-ecological interactions under climate change.
基金supported by the National Natural Science Foundation of China(No.42305109)Quzhou Municipal Science and Technology Bureau(No.2023K222).
文摘Inhalation of atmospheric PM_(2.5)can induce the generation of excessive reactive oxygen species(ROS)in human alveoli,triggering local and systemic inflammation,which can directly or indirectly result in respiratory and cardiovascular diseases.In this study,we assessed the oxidative potential(OP)of fresh and O_(3)-aged PM_(2.5)particles from various urban and rural emission sources using the dithiothreitol(DTT)method.Our results revealed variations in the OP of fresh PM_(2.5)among different emission sources,with biomass burning sources exhibiting the highest OP,followed by industrial areas,vehicular emissions,cooking emissions,and suburban areas,respectively.Water-soluble organics and transition metals might potentially exert significant influence on particle OP.O_(3)aging notably decreased the OP of PM_(2.5)particles,possibly due to the oxidation of highly DTT-active components into low redox-active small molecules.Moreover,the evolution of OP in different PM_(2.5)components,including methanol-soluble and insoluble fractions,exhibited distinct responses to O_(3)aging for source-oriented PM_(2.5).Additionally,differences in chemical composition between fresh and aged PM_(2.5)were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions.This study systematically delineates variances in the toxic potential of fresh and O_(3)-aged PM_(2.5)from various anthropogenic sources.The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM_(2.5),as well as for formulating human health protection policies.
基金supported by the CNPC-SWPU Innovation Alliance Technology Cooperation Project(2020CX020000)the National Natural Science Foundation of China(42022028)+1 种基金the Natural Science Foundation of Sichuan Province(24NSFSC0808)the China Scholarship Council(202306440144)。
文摘In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.