The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
The sorting system applies multi-sensor technology,PLC technology,pneumatic technology and frequency converter technology to realize the efficient automatic sorting of workpieces and solve the problem of automatic sor...The sorting system applies multi-sensor technology,PLC technology,pneumatic technology and frequency converter technology to realize the efficient automatic sorting of workpieces and solve the problem of automatic sorting of more complex shaped products.Through running test,the system has high efficiency,reliable operation,strong practicability,and great application value in automatic production lines such as mechanical processing,electronic assembly and article circulation.展开更多
With the rapid development of express logistics business side, the traditional sorting has been unable to meet the needs of the logistics courier logistics development. In this case, the article combined with RFID rad...With the rapid development of express logistics business side, the traditional sorting has been unable to meet the needs of the logistics courier logistics development. In this case, the article combined with RFID radio frequency technology, put forward new ideas on the transformation of traditional logistics sorted. By adding RFID tags and binding RFID tags on waybill number, Comparison test validate and affirm that the RFID technology of sorting system is usability and ease of use.展开更多
Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulatio...Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process,resulting in most droplets being either empty or containing multiple cells.Traditional single-cell sorting methods typically rely on fluorescence labeling for identification,but this approach not only increases experimental costs and complexity but can also impact cell viability.Additionally,current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates.To address these challenges,this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms.This system enables real-time analysis of droplet images,facilitating precise identification,counting,and automated sorting of target droplets.To validate the system’s performance,polystyrene microspheres were used to simulate real cells in sorting tests.The results demonstrated that,under label-free conditions,the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency.This system provides an effective,label-free solution for cell sorting,with potential applications in precision medicine,single-cell sequencing,and drug screening.展开更多
Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of comm...Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration.While stochastic dispersal and species sorting are known to influence local biological communities,most studies have focused on horizontal dispersal,often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal.We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution,as well as two components of stochastic dispersal,vertical exchange and horizontal dispersal,in structuring local bacterial communities.Our integrated analyses of planktonic and sedimentary bacterial communities revealed that,despite different spatial patterns along the river,both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient.Notably,in addition to the effect of horizontal dispersal along the river,the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities.These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.展开更多
The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and materia...The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Ti...The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.展开更多
Identification,sorting,and sequencing of individual cells directly from in situ samples have great potential for in-depth analysis of the structure and function of microbiomes.In this work,based on an artificial intel...Identification,sorting,and sequencing of individual cells directly from in situ samples have great potential for in-depth analysis of the structure and function of microbiomes.In this work,based on an artificial intelligence(AI)-assisted object detection model for cell phenotype screening and a cross-interface contact method for single-cell exporting,we developed an automatic and index-based system called EasySort AUTO,where individual microbial cells are sorted and then packaged in a microdroplet and automatically exported in a precisely indexed,“One-Cell-One-Tube”manner.The target cell is automatically identified based on an AI-assisted object detection model and then mobilized via an optical tweezer for sorting.Then,a crossinterface contact microfluidic printing method that we developed enables the automated transfer of cells from the chip to the tube,which leads to coupling with subsequent single-cell culture or sequencing.The efficiency of the system for single-cell printing is>93%.The throughput of the system for single-cell printing is~120 cells/h.Moreover,>80%of single cells of both yeast and Escherichia coli are culturable,suggesting the superior preservation of cell viability during sorting.Finally,AI-assisted object detection supports automated sorting of target cells with high accuracy from mixed yeast samples,which was validated by downstream single-cell proliferation assays.The automation,index maintenance,and vitality preservation of EasySort AUTO suggest its excellent application potential for single-cell sorting.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-...With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.展开更多
The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylo...The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.展开更多
Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexi...Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ...This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.展开更多
Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs a...Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金City College of Dongguan University of Technology Youth Teacher Development Fund(2019QJY003Z)Key Cultivating Disciplines of Guangdong Province(Document No.45,2017)City College of Dongguan University of Technology Youth Teacher Development Fund(2020QJY001Z).
文摘The sorting system applies multi-sensor technology,PLC technology,pneumatic technology and frequency converter technology to realize the efficient automatic sorting of workpieces and solve the problem of automatic sorting of more complex shaped products.Through running test,the system has high efficiency,reliable operation,strong practicability,and great application value in automatic production lines such as mechanical processing,electronic assembly and article circulation.
文摘With the rapid development of express logistics business side, the traditional sorting has been unable to meet the needs of the logistics courier logistics development. In this case, the article combined with RFID radio frequency technology, put forward new ideas on the transformation of traditional logistics sorted. By adding RFID tags and binding RFID tags on waybill number, Comparison test validate and affirm that the RFID technology of sorting system is usability and ease of use.
文摘Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process,resulting in most droplets being either empty or containing multiple cells.Traditional single-cell sorting methods typically rely on fluorescence labeling for identification,but this approach not only increases experimental costs and complexity but can also impact cell viability.Additionally,current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates.To address these challenges,this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms.This system enables real-time analysis of droplet images,facilitating precise identification,counting,and automated sorting of target droplets.To validate the system’s performance,polystyrene microspheres were used to simulate real cells in sorting tests.The results demonstrated that,under label-free conditions,the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency.This system provides an effective,label-free solution for cell sorting,with potential applications in precision medicine,single-cell sequencing,and drug screening.
基金supported by the National Natural Science Foundation of China(No.32471608)the Open Project of Key Laboratory of Environmental Biotechnology,CAS(No.kf2020002)Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health.
文摘Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration.While stochastic dispersal and species sorting are known to influence local biological communities,most studies have focused on horizontal dispersal,often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal.We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution,as well as two components of stochastic dispersal,vertical exchange and horizontal dispersal,in structuring local bacterial communities.Our integrated analyses of planktonic and sedimentary bacterial communities revealed that,despite different spatial patterns along the river,both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient.Notably,in addition to the effect of horizontal dispersal along the river,the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities.These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.
文摘The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
基金Supported by Direktorat Riset dan Pengembangan(Directorate of Research and Development)Universitas Indonesia(NKB-690/UN2.RST/HKP.05.00/2022).
文摘The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported by Science and Technology Project of State Grid Corporation Headquarters under Grant 5108-202218280A-2-170-XG(Development and Application of Power Time-Sensitive Network Switching Chip。
文摘The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.
基金the National Key R&D Program of China(Grant No.2021YFC2101100).
文摘Identification,sorting,and sequencing of individual cells directly from in situ samples have great potential for in-depth analysis of the structure and function of microbiomes.In this work,based on an artificial intelligence(AI)-assisted object detection model for cell phenotype screening and a cross-interface contact method for single-cell exporting,we developed an automatic and index-based system called EasySort AUTO,where individual microbial cells are sorted and then packaged in a microdroplet and automatically exported in a precisely indexed,“One-Cell-One-Tube”manner.The target cell is automatically identified based on an AI-assisted object detection model and then mobilized via an optical tweezer for sorting.Then,a crossinterface contact microfluidic printing method that we developed enables the automated transfer of cells from the chip to the tube,which leads to coupling with subsequent single-cell culture or sequencing.The efficiency of the system for single-cell printing is>93%.The throughput of the system for single-cell printing is~120 cells/h.Moreover,>80%of single cells of both yeast and Escherichia coli are culturable,suggesting the superior preservation of cell viability during sorting.Finally,AI-assisted object detection supports automated sorting of target cells with high accuracy from mixed yeast samples,which was validated by downstream single-cell proliferation assays.The automation,index maintenance,and vitality preservation of EasySort AUTO suggest its excellent application potential for single-cell sorting.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
基金supported by the Styrelsen för Internationellt Utvecklingssamarbete.
文摘With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.
基金supported by the Key Science & Technology Project of Gansu Province (22ZD6NA007)the National Key Research and Development Program of China (2021YFD2200202)Computing support was provided by the Supercomputing Center of Lanzhou University
文摘The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.
基金supported by the National Natural Science Foundation of China (grant no.32001085,31971392,31960319)。
文摘Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.
基金supported by the National Natural Science Foundation of China(Grant No.12274105)the Heilongjiang Natural Science Funds for Distinguished Young Scholars(Grant No.JQ2022A001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021020)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province(Grant No.LH2023A006).
文摘Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.