Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge ...Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.展开更多
Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.Th...Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.展开更多
Co-contamination of chlorinated hydrocarbons and arsenic is frequently observed in the chemically contaminated sites and their surroundings in China.However,the interaction between these complex contaminants in soil r...Co-contamination of chlorinated hydrocarbons and arsenic is frequently observed in the chemically contaminated sites and their surroundings in China.However,the interaction between these complex contaminants in soil remains is unclear.This study collected ten background soils with varying properties from various regions throughout China,and investigated the sorption and desorption process of trichloroethylene(TCE)in the exogenous arsenate(As(V))contaminated soils.The results of the batch experiments demonstrated that TCE was rapidly adsorbed by soil organic matter(SOM).Both SOM and minerals contributed to the slow sorption equilibrium process.The sorption isotherms were linear,while the desorption isotherms were non-linear.In Heilongjiang(HLJ)soil,As(V)contamination increased the TCE sorption contribution of black carbon and decreased the contribution of minerals.During the aging process of As(V)in soils,SOM was replaced by AsO_4~(3-),which formed complexes with soil Fe/Al oxides,resulting in a significant increase in hydroxyl groups and hydrophilicity of the soil surface.This hindered the hydrophobic sorption of TCE.Additionally,As(V)contamination affected soil geotechnical properties,and the Ascations precipitation could block the sorption micropores.The collective results of these processes caused a reduction in the sorption of TCE on the majority of As(V)-contaminated soils(702-5854 mg/kg)in comparison to background soils(1194-6374 mg/kg).The systematic investigation of sorption-desorption behaviors of TCE in As(V)-contaminated soils will provide a scientific basis for the calculation of soil environmental capacity of heavy metalorganic combined contamination in the future.展开更多
The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy...The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and Fourier-transform infrared spectroscopy(FTIR)are used to investigate the morphological,chemical and structural changes of the treated straw surface.The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction(XRD).The application of sodium hydroxide solution results in the disruption of the straw surface.As the concentration of sodium hydroxide increases,the disruption of the straw surface increases,and the ability of the straw to adsorb water vapor also increases over the entire RH range.In addition to the surface disruption and chemical changes caused by the alkaline treatment,the differences in the equilibrium moisture content of treated and untreated rape straw can also be attributed to the formation of minerals on the straw surface,namely calcite for the 2%sodium hydroxide solution,and gaylussite and thermonatrite for the 10%solution.展开更多
Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_...Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_(2)O_(4) nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis(BIOVIA Materials Studio).Hydrogels,known for their biocompatibility and extracellular matrix-mimicking properties,support essential cellular behaviors such as adhesion,proliferation,and migration.The integration of MgFe_(2)O_(4) nanoparticles imparts both electrical conductivity and magnetic responsiveness,enabling controlled transmission of electrical signals that are crucial for guiding cellular processes like differentiation and directed migration.Furthermore,the hydrogel acts as a delivery medium,facilitating the adsorption of MgFe_(2)O_(4) nanoparticles onto spinal tissue through strong Van der Waals and intramolecular interactions.The computational simulations revealed a robust adsorption profile,with a binding distance of 20.180Åand a cumulative adsorption energy of 2740.42 kcal/mol,indicating stable nanoparticle-tissue interactions.Pressure-dependent sorption analysis further demonstrated that reduced pressure conditions enhance adsorption strength,promoting tighter material-tissue integration.The adverse Van der Waals energy and increased intramolecular energy observed under these conditions underscore the importance of optimized adsorption settings for functional tissue interface formation.Altogether,the conductive hydrogel-MgFe_(2)O_(4) composite system offers a promising therapeutic platform by combining structural support,electrical stimulation,and magnetic guidance,thereby enhancing cell-material interactions and fostering an environment conducive to spinal cord tissue repair.展开更多
Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of miner...Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible.展开更多
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been...Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.展开更多
By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power...By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power,sorption speed,desorption,and sorption of organic compounds from sewage,exhaust gas and soil were discussed.Moreover,the resins were used to decrease LOD and BOD5 values of water waste from sewage factory.Theyare a klndof potential materials for environmental control.展开更多
Slow release of emerging contaminants limits their accessibility from soil to pore water,constraining the treatment efficiency of physio-chemical treatment sites.DC fields mobilize organic contaminants and influence t...Slow release of emerging contaminants limits their accessibility from soil to pore water,constraining the treatment efficiency of physio-chemical treatment sites.DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites.Poor knowledge,however,exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid(PFOA)transport in porous media.Here,we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures.Variations of pseudo-second-order kinetic constants(kPSO)were correlated to the liquid viscosity variations(η)and elctroosmotic flow velocities(vEOF).Applying DC fields and elevated temperature significantly(>37%)decreased PFOA sorption to zeolite.A good correlation betweenη,vEOF,and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics.These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.展开更多
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp...The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.展开更多
NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Am...NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).展开更多
Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow,...Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].展开更多
Equilibrium moisture content (EMC) data for rough rice of thirteen Chinese varieties were obtained by static gravimetric method at five different temperatures (10, 20, 25, 30, and 35 ℃) and 11% to 96% equilibrium...Equilibrium moisture content (EMC) data for rough rice of thirteen Chinese varieties were obtained by static gravimetric method at five different temperatures (10, 20, 25, 30, and 35 ℃) and 11% to 96% equilibrium relative humidity (ERH). Six models, i.e., Brunauer-Emmett-Teller, Guggenheim-Anderson-deBoer, Modified Chung-Pfost (MCPE), Modified Henderson, Modified Oswin, and Strohman-Yoerger (STYE) fitted the EMC/ERH data based on the coefficient of determination, residue sum-of-squares, standard error of estimate, and mean relative percent error. The best fitted equations were MCPE and STYE, but MCPE is three-parameter, readily transformed equation and adopted in this study. The isosteric heats for both rough rice desorption and adsorption, and for both the sorption of Japonica and Indica rice, decreased rapidly with an increase in seed moisture content (m.c.) until the m.c. of 20% dry basis (d.b.) reached, and thereafter they decreased smoothly with increasing moisture content. The isosteric heats of rough rice desorption were higher than those of adsorption below the m.c. of 22.5% d.b., but thereafter, there was no significant difference found between desorption and adsorption. The sorption isosteric heats of Indica rice were slightly higher than those of Japonica rice under all moisture contents at a constant temperature. These results provide a sound basis for future work on the drying and storage of rice.展开更多
A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded a...A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.展开更多
Biochar derived from partial combustion of vegetation is ubiquitous and potentially effective in sequestration of environmental contaminants. Biochars were prepared by burning of red gum (Eucalyptus spp.) woodchips ...Biochar derived from partial combustion of vegetation is ubiquitous and potentially effective in sequestration of environmental contaminants. Biochars were prepared by burning of red gum (Eucalyptus spp.) woodchips at 450 and 850℃ (labeled as BC450 and BC850). These two biochars were found to possess markedly different properties in terms of surface area and porosity. Short-term equilibration tests (24 hr) were conducted to assess the sorption-desorption behavior of pyrimethanil in the soil amended with various amounts of biochar of each type, with a special focus on the desorption behavior of the sorbed pesticide through four times successive desorption by dilution. Sorption coefficient and isotherm nonlinearity of the amended soils progressively increased with the content of biochar in the soil. Biochar BC850 with higher surface area and microporosity showed a stronger effect on the reversibility of sorption pesticide. The soils amended with 5% BC450 and 1% BC850 had nearly the same sorption capacity for pyrimethanil; however, their desorption processes were very different with 13.65% and 1.49% of the sorbed pesticide being released, respectively. This study suggested that biochar in soil could be an important factor for immobilization of a pesticide and thus affecting its environment fate in soil.展开更多
Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were inv...Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50%CB and 100%CB), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd2+ decreased in the order: 50%BS > 100%BS > CK > 50%CB > 100%CB, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100%CB > 50%CB > 100%BS > 50%BS > CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio KC, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.展开更多
Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, sugges...Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be –7.11 to –5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment.展开更多
Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), pe...Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), peptone and citric acid. The nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of L-PH reduced the sorption capacity and desorption hysteresis because of the solubilization of PHE in L-PH solution. Peptone at 50-500 mg/L also led to a decrease in sorption attributed to solubilization, although the sorbed peptone on the BC surface could slightly increase PHE sorption. Unlike L-PH and peptone, citric acid enhanced the sorption capacity and irreversibility of PHE on BC mainly due to the strong sorption of citric acid on the BC surface. Our results may help to understand the different impacts of DOM on the distribution and transport of PAH in the environment.展开更多
A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlor...A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.展开更多
The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory ...The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorpfion of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.展开更多
文摘Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.
基金supported by the Hundred Talents Programof the Chinese Academy of Sciences,the Pre-Research Project JZX7Y20220414101801the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB35000000)the National Natural Science Foundation Projects(No.51806231).
文摘Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.
基金supported by the National Key R&D Program(Nos.2021YFC1809101 and 2022YFC3701404)the Fundamental Research Funds for the Central Universities(No.2022300301)。
文摘Co-contamination of chlorinated hydrocarbons and arsenic is frequently observed in the chemically contaminated sites and their surroundings in China.However,the interaction between these complex contaminants in soil remains is unclear.This study collected ten background soils with varying properties from various regions throughout China,and investigated the sorption and desorption process of trichloroethylene(TCE)in the exogenous arsenate(As(V))contaminated soils.The results of the batch experiments demonstrated that TCE was rapidly adsorbed by soil organic matter(SOM).Both SOM and minerals contributed to the slow sorption equilibrium process.The sorption isotherms were linear,while the desorption isotherms were non-linear.In Heilongjiang(HLJ)soil,As(V)contamination increased the TCE sorption contribution of black carbon and decreased the contribution of minerals.During the aging process of As(V)in soils,SOM was replaced by AsO_4~(3-),which formed complexes with soil Fe/Al oxides,resulting in a significant increase in hydroxyl groups and hydrophilicity of the soil surface.This hindered the hydrophobic sorption of TCE.Additionally,As(V)contamination affected soil geotechnical properties,and the Ascations precipitation could block the sorption micropores.The collective results of these processes caused a reduction in the sorption of TCE on the majority of As(V)-contaminated soils(702-5854 mg/kg)in comparison to background soils(1194-6374 mg/kg).The systematic investigation of sorption-desorption behaviors of TCE in As(V)-contaminated soils will provide a scientific basis for the calculation of soil environmental capacity of heavy metalorganic combined contamination in the future.
基金supported by the Czech Science Foundation,under project No.20-12166S.
文摘The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and Fourier-transform infrared spectroscopy(FTIR)are used to investigate the morphological,chemical and structural changes of the treated straw surface.The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction(XRD).The application of sodium hydroxide solution results in the disruption of the straw surface.As the concentration of sodium hydroxide increases,the disruption of the straw surface increases,and the ability of the straw to adsorb water vapor also increases over the entire RH range.In addition to the surface disruption and chemical changes caused by the alkaline treatment,the differences in the equilibrium moisture content of treated and untreated rape straw can also be attributed to the formation of minerals on the straw surface,namely calcite for the 2%sodium hydroxide solution,and gaylussite and thermonatrite for the 10%solution.
基金the“Young Talent Research Grant”:(600-RMC/YTR/5/3(004/2022)Universiti Teknologi Mara(UiTM)for providing the financial support.
文摘Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_(2)O_(4) nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis(BIOVIA Materials Studio).Hydrogels,known for their biocompatibility and extracellular matrix-mimicking properties,support essential cellular behaviors such as adhesion,proliferation,and migration.The integration of MgFe_(2)O_(4) nanoparticles imparts both electrical conductivity and magnetic responsiveness,enabling controlled transmission of electrical signals that are crucial for guiding cellular processes like differentiation and directed migration.Furthermore,the hydrogel acts as a delivery medium,facilitating the adsorption of MgFe_(2)O_(4) nanoparticles onto spinal tissue through strong Van der Waals and intramolecular interactions.The computational simulations revealed a robust adsorption profile,with a binding distance of 20.180Åand a cumulative adsorption energy of 2740.42 kcal/mol,indicating stable nanoparticle-tissue interactions.Pressure-dependent sorption analysis further demonstrated that reduced pressure conditions enhance adsorption strength,promoting tighter material-tissue integration.The adverse Van der Waals energy and increased intramolecular energy observed under these conditions underscore the importance of optimized adsorption settings for functional tissue interface formation.Altogether,the conductive hydrogel-MgFe_(2)O_(4) composite system offers a promising therapeutic platform by combining structural support,electrical stimulation,and magnetic guidance,thereby enhancing cell-material interactions and fostering an environment conducive to spinal cord tissue repair.
基金PETRONAS Research fund(PRF)under PETRONAS Teknologi Transfer(PTT)Pre-Commercialization—External:YUTP-PRG Cycle 2022(015PBC-020).
文摘Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible.
基金supported by the Australian Research Council(Grant No.DP200101293)the National Natural Science Foundation of China(Grant No.42202286)the Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards(Grant No.PCMGH-2017-Z-02).
文摘Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.
文摘By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power,sorption speed,desorption,and sorption of organic compounds from sewage,exhaust gas and soil were discussed.Moreover,the resins were used to decrease LOD and BOD5 values of water waste from sewage factory.Theyare a klndof potential materials for environmental control.
基金supported by the National Natural Science Foundation of China(No.42277011)the fellowship of the China Postdoctoral Science Foundation(Nos.2023T160667 and 2022M713300)。
文摘Slow release of emerging contaminants limits their accessibility from soil to pore water,constraining the treatment efficiency of physio-chemical treatment sites.DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites.Poor knowledge,however,exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid(PFOA)transport in porous media.Here,we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures.Variations of pseudo-second-order kinetic constants(kPSO)were correlated to the liquid viscosity variations(η)and elctroosmotic flow velocities(vEOF).Applying DC fields and elevated temperature significantly(>37%)decreased PFOA sorption to zeolite.A good correlation betweenη,vEOF,and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics.These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.
基金financially supported by the National Natural Science Foundation of China (51904319)the Fundamental Research Funds for the Central Universities (21CX06029A)。
文摘The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.
基金The financial support from the Natural Science Foundation of Shandong Province (ZR2020KB003)
文摘NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).
基金provided by the project DPT2002K120640 funded by State Planning Organization (DPT), Turkey
文摘Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].
文摘Equilibrium moisture content (EMC) data for rough rice of thirteen Chinese varieties were obtained by static gravimetric method at five different temperatures (10, 20, 25, 30, and 35 ℃) and 11% to 96% equilibrium relative humidity (ERH). Six models, i.e., Brunauer-Emmett-Teller, Guggenheim-Anderson-deBoer, Modified Chung-Pfost (MCPE), Modified Henderson, Modified Oswin, and Strohman-Yoerger (STYE) fitted the EMC/ERH data based on the coefficient of determination, residue sum-of-squares, standard error of estimate, and mean relative percent error. The best fitted equations were MCPE and STYE, but MCPE is three-parameter, readily transformed equation and adopted in this study. The isosteric heats for both rough rice desorption and adsorption, and for both the sorption of Japonica and Indica rice, decreased rapidly with an increase in seed moisture content (m.c.) until the m.c. of 20% dry basis (d.b.) reached, and thereafter they decreased smoothly with increasing moisture content. The isosteric heats of rough rice desorption were higher than those of adsorption below the m.c. of 22.5% d.b., but thereafter, there was no significant difference found between desorption and adsorption. The sorption isosteric heats of Indica rice were slightly higher than those of Japonica rice under all moisture contents at a constant temperature. These results provide a sound basis for future work on the drying and storage of rice.
文摘A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.
文摘Biochar derived from partial combustion of vegetation is ubiquitous and potentially effective in sequestration of environmental contaminants. Biochars were prepared by burning of red gum (Eucalyptus spp.) woodchips at 450 and 850℃ (labeled as BC450 and BC850). These two biochars were found to possess markedly different properties in terms of surface area and porosity. Short-term equilibration tests (24 hr) were conducted to assess the sorption-desorption behavior of pyrimethanil in the soil amended with various amounts of biochar of each type, with a special focus on the desorption behavior of the sorbed pesticide through four times successive desorption by dilution. Sorption coefficient and isotherm nonlinearity of the amended soils progressively increased with the content of biochar in the soil. Biochar BC850 with higher surface area and microporosity showed a stronger effect on the reversibility of sorption pesticide. The soils amended with 5% BC450 and 1% BC850 had nearly the same sorption capacity for pyrimethanil; however, their desorption processes were very different with 13.65% and 1.49% of the sorbed pesticide being released, respectively. This study suggested that biochar in soil could be an important factor for immobilization of a pesticide and thus affecting its environment fate in soil.
基金Project supported by the National Natural Science Foundation of China (No. 40301021).
文摘Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50%CB and 100%CB), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd2+ decreased in the order: 50%BS > 100%BS > CK > 50%CB > 100%CB, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100%CB > 50%CB > 100%BS > 50%BS > CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio KC, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.
基金supported by the National Natural Science Foundation of China (No. 20477050, 20621703)
文摘Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be –7.11 to –5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment.
基金The study was supported by the National Science Foundation for Innovative Research Group(No.51121003)the Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07202002)the Open Foundation of State Key Joint Laboratory of Environment Simulation and Pollution Control(Beijing Normal University)(No.10K05ESPCN)
文摘Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), peptone and citric acid. The nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of L-PH reduced the sorption capacity and desorption hysteresis because of the solubilization of PHE in L-PH solution. Peptone at 50-500 mg/L also led to a decrease in sorption attributed to solubilization, although the sorbed peptone on the BC surface could slightly increase PHE sorption. Unlike L-PH and peptone, citric acid enhanced the sorption capacity and irreversibility of PHE on BC mainly due to the strong sorption of citric acid on the BC surface. Our results may help to understand the different impacts of DOM on the distribution and transport of PAH in the environment.
基金Project supported by the National Natural Science Foundation of China (No. 30170537).
文摘A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-309)National Natural Science Foundation of China (No. 40871089, 40830535)
文摘The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorpfion of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.