Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance ...Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency.However,the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored.Alternatively,in the absence of bubble-shaped agents,some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT.Diagnostic and therapeutic ultrasound can also activate cavitation bubbles,which supply energy to sonosensitive agents,leading to the production of cytotoxic free radicals to achieve therapeutic effects.While inorganic materials often spark controversy in clinical applications,their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals.Some organic-inorganic hybrid sonosensitive systems have also been reported,combining the benefits of inorganic and organic sonosensitive agents.Alternatively,by employing cell surface modification engineering to enable cells to perform functions such as immune escape,drug loading,gas loading,and sonosensitivity,cellular sonosensitizers have also been developed.However,further exploration is needed on the acoustic properties,ability to generate reactive oxygen species(ROS),and potential clinical application of this cellular sonosensitizer.This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts,including organic,inorganic,combined organic-inorganic sonosensitizers,and cellular sonosensitizers.This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.展开更多
A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocom...A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.展开更多
As a carbon-rich material produced by pyrolysis of biomass,biochar features low cost,large specific surface area,and widely available feedstocks based on the functional diversity and environmental-friendly properties,...As a carbon-rich material produced by pyrolysis of biomass,biochar features low cost,large specific surface area,and widely available feedstocks based on the functional diversity and environmental-friendly properties,it has received increasing attention in the fields of pollutant removal due to three win-win effects of water remediation,carbon sequestration and reutilization of wastes.To design excellent biochar-based catalysts for environmental applications,one must understand recent advances in the catalysts for contaminant removal.This review focuses on the current application of biochar-based catalysts in redox systems,Fenton-like systems,sonocatalytic systems and photocatalytic systems.Besides in-depth discussion in effects of preparation conditions on physicochemical characteristics of biochars,the review supplements new preparation technologies of biochar and biochar-based catalysts.Most importantly,the advantages/shortcomings,catalysis mechanisms,as well as the pollutant removal ability of different types of biochar-based catalysts are discussed.The environmental risks of the catalyst applications are also elaborated on.Future research on biochar-based catalyst production and its environmental applications is discussed.The review provides a good overview of the current advances of biochar-based catalysts in pollutant control and the future research directions.展开更多
This review summarizes the utilization of supported noble metal nanoparticles (such as Au/TiO2, Au/ZrO2, Ag/AgCl) as efficient photo/sono-catalysts for the selective synthesis of chemicals and degradation of environme...This review summarizes the utilization of supported noble metal nanoparticles (such as Au/TiO2, Au/ZrO2, Ag/AgCl) as efficient photo/sono-catalysts for the selective synthesis of chemicals and degradation of environmental pollutants. Supported noble metal nanoparticles could efficiently catalyze the conversion of solar energy into chemical energy. Under UV/visible light irradiation, important chemical transformations such as the oxidation of alcohols to carbonyl compounds, the oxidation of thiol to disulfide, the oxidation of benzene to phenol, and the reduction of nitroaromatic compounds to form aromatic azo compounds, are effectively achieved by supported noble metal nanoparticles. Under ultrasound irradiation, supported noble metal nanoparticles could efficiently catalyze the production of hydrogen from water. Moreover, various pollutants, including aldehydes, alcohols, acids, phenolic compounds, and dyes, can be effectively decomposed over supported noble metal nanoparticles under UV/visible light irradiation. Under ultrasound irradiation, pollutant molecules can also be completely degraded with supported noble metal nanoparticles as catalysts.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(52100014 and 12274220)。
文摘Sonodynamic therapy(SDT)has emerged as a novel and highly researched advancement in the medical field.Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency.However,the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored.Alternatively,in the absence of bubble-shaped agents,some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT.Diagnostic and therapeutic ultrasound can also activate cavitation bubbles,which supply energy to sonosensitive agents,leading to the production of cytotoxic free radicals to achieve therapeutic effects.While inorganic materials often spark controversy in clinical applications,their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals.Some organic-inorganic hybrid sonosensitive systems have also been reported,combining the benefits of inorganic and organic sonosensitive agents.Alternatively,by employing cell surface modification engineering to enable cells to perform functions such as immune escape,drug loading,gas loading,and sonosensitivity,cellular sonosensitizers have also been developed.However,further exploration is needed on the acoustic properties,ability to generate reactive oxygen species(ROS),and potential clinical application of this cellular sonosensitizer.This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts,including organic,inorganic,combined organic-inorganic sonosensitizers,and cellular sonosensitizers.This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
基金the Lorestan University and Iran Nanotechnology Initiative Council (INIC) for their financial support
文摘A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.
基金the National Natural Science Foundation of China under Grant 41671331,the Innovative Approaches Special Project of the Ministry of Science and Technology of China under Grant(2020IM020300)the Beijing-Tianjin-Hebei Collaborative Innovation Promotion Project,China(Z201100006720001)the National Key Research and Development Program of China under Grant 2016YFA0600103.
文摘As a carbon-rich material produced by pyrolysis of biomass,biochar features low cost,large specific surface area,and widely available feedstocks based on the functional diversity and environmental-friendly properties,it has received increasing attention in the fields of pollutant removal due to three win-win effects of water remediation,carbon sequestration and reutilization of wastes.To design excellent biochar-based catalysts for environmental applications,one must understand recent advances in the catalysts for contaminant removal.This review focuses on the current application of biochar-based catalysts in redox systems,Fenton-like systems,sonocatalytic systems and photocatalytic systems.Besides in-depth discussion in effects of preparation conditions on physicochemical characteristics of biochars,the review supplements new preparation technologies of biochar and biochar-based catalysts.Most importantly,the advantages/shortcomings,catalysis mechanisms,as well as the pollutant removal ability of different types of biochar-based catalysts are discussed.The environmental risks of the catalyst applications are also elaborated on.Future research on biochar-based catalyst production and its environmental applications is discussed.The review provides a good overview of the current advances of biochar-based catalysts in pollutant control and the future research directions.
文摘This review summarizes the utilization of supported noble metal nanoparticles (such as Au/TiO2, Au/ZrO2, Ag/AgCl) as efficient photo/sono-catalysts for the selective synthesis of chemicals and degradation of environmental pollutants. Supported noble metal nanoparticles could efficiently catalyze the conversion of solar energy into chemical energy. Under UV/visible light irradiation, important chemical transformations such as the oxidation of alcohols to carbonyl compounds, the oxidation of thiol to disulfide, the oxidation of benzene to phenol, and the reduction of nitroaromatic compounds to form aromatic azo compounds, are effectively achieved by supported noble metal nanoparticles. Under ultrasound irradiation, supported noble metal nanoparticles could efficiently catalyze the production of hydrogen from water. Moreover, various pollutants, including aldehydes, alcohols, acids, phenolic compounds, and dyes, can be effectively decomposed over supported noble metal nanoparticles under UV/visible light irradiation. Under ultrasound irradiation, pollutant molecules can also be completely degraded with supported noble metal nanoparticles as catalysts.