To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced v...To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced velocities and gap spacing to observe flow-induced vibrations(FIVs).The immersed boundary–lattice Boltzmann flux solver(IB–LBFS)was applied as a numerical solution method,allowing for straightforward application on a simple Cartesian mesh.The accuracy and rationality of this method have been verified through comparisons with previous numerical results,including studies on flow past three stationary circular cylinders arranged in a similar pattern and vortex-induced vibrations of a single cylinder across different reduced velocities.When examining the FIVs of three cylinders,numerical simulations were carried out across a range of reduced velocities(3.0≤Ur≤13.0)and gap spacing(L=3D,4D,and 5D).The observed vibration response included several regimes:the desynchronization regime,the initial branch,and the lower branch.Notably,the transverse amplitude peaked,and a double vortex street formed in the wake when the reduced velocity reached the lower branch.This arrangement of three cylinders proved advantageous for energy capture as the upstream cylinder’s vibration response mirrored that of an isolated cylinder,while the response of each downstream cylinder was significantly enhanced.Compared to a single cylinder,the vibration and flow characteristics of this system are markedly more complex.The maximum transverse amplitudes of the downstream cylinders are nearly identical and exceed those observed in a single-cylinder set-up.Depending on the gap spacing,the flow pattern varied:it was in-phase for L=3D,antiphase for L=4D,and exhibited vortex shedding for L=5D.The wake configuration mainly featured double vortex streets for L=3D and evolved into two pairs of double vortex streets for L=5D.Consequently,it well illustrates the coupling mechanism that dynamics characteristics and wake vortex change with gap spacing and reduced velocities.展开更多
An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed o...An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed operator adheres to the physics essence of fiber analysis.The training of the mode-solving operator adopts a hybrid physics-informed and data-driven approach,providing the advantages of strong physical consistency,enhanced prediction accuracy,and reduced data dependency in comparison with purely datadriven methods.Benefiting from the improvements in network input-output mapping formulation,the proposed operator offers broader applicability to different fiber types and greater flexibility for property optimization.Combined with the particle swarm optimization and refractive index optimization,the operator demonstrates its capacity for the inverse design of multi-step-index fibers(MSIFs)and graded-index fibers(GRIFs).For MSIFs,to ensure a low mode crosstalk for short-distance transmission systems,optimized refractive index profiles(RIPs)of both three-ring and four-ring structures are obtained from large structure parameter search spaces.For GRIFs,to ensure a low receiving complexity for long-haul transmission systems,optimized RIP with low root mean square mode group delay is obtained through point-wise fine-tuning.Moreover,the operator is capable of analyzing the effect of dopant diffusion in manufacturing.展开更多
We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous...We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous media.The proposed method rely on four pillars:(i)dimensionless numbers as input parameters for the machine learning model,(ii)simplified numerical model(two-dimensional)for the offline training,(iii)dynamic control of a nonlinear solver tuning parameter(numerical relaxation),(iv)and online learning for time real-improvement of the machine learning model.This strategy decreases the number of nonlinear iterations by dynamically modifying a single global parameter,the relaxation factor,and by adaptively learning the attributes of each numerical model on-the-run.Furthermore,this work performs a sensitivity study in the dimensionless parameters(machine learning features),assess the efficacy of various machine learning models,demonstrate a decrease in nonlinear iterations using our method in more intricate,realistic three-dimensional models,and fully couple a machine learning model into an open-source multiphase flow simulator achieving up to 85%reduction in computational time.展开更多
以Aspen Open Solver接口集中的非线性代数方程组(NLA)部分作为研究对象,在对接口集进行系统地分析之后,利用AspenTech提供的接口代码将分别基于梯度和非基于梯度的四种求解算法嵌入生成solver组件,并实现用Aspen Plus调用该solver组件...以Aspen Open Solver接口集中的非线性代数方程组(NLA)部分作为研究对象,在对接口集进行系统地分析之后,利用AspenTech提供的接口代码将分别基于梯度和非基于梯度的四种求解算法嵌入生成solver组件,并实现用Aspen Plus调用该solver组件观察各种算法嵌入的结果。展开更多
In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open ...In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open FOAM.Reynolds-averaged Navier?Stokes(RANS) equations are chosen as governing equations and the volume of fluid(VOF) is employed to capture the two phases interface.Incoming wave group is generated by imposing the boundary conditions of the tank inlet.A spectrum based correction procedure is developed to make the measured spectrum approaching to the target spectrum.This procedure can automatically adjust the wave generation signal based on the measured wave elevation by wave height probe in numerical wave tank.After 3 to 4 iterations,the measured spectrum agrees well with the target one.In order to validate this method,several wave spectra are chosen and validated in the numerical wave tank,with comparison between the final measured and target spectra.In order to investigate a practical situation,a modified Wigley hull is placed in the wave tank with incoming irregular waves.The wave-induced heave and pitch motions are treated by Fourier analysis to obtain motion responses,showing good agreements with the measurements.展开更多
基金Supported by the National Natural Science Foundation of China(52201350,52201394,and 52271301)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2022008).
文摘To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced velocities and gap spacing to observe flow-induced vibrations(FIVs).The immersed boundary–lattice Boltzmann flux solver(IB–LBFS)was applied as a numerical solution method,allowing for straightforward application on a simple Cartesian mesh.The accuracy and rationality of this method have been verified through comparisons with previous numerical results,including studies on flow past three stationary circular cylinders arranged in a similar pattern and vortex-induced vibrations of a single cylinder across different reduced velocities.When examining the FIVs of three cylinders,numerical simulations were carried out across a range of reduced velocities(3.0≤Ur≤13.0)and gap spacing(L=3D,4D,and 5D).The observed vibration response included several regimes:the desynchronization regime,the initial branch,and the lower branch.Notably,the transverse amplitude peaked,and a double vortex street formed in the wake when the reduced velocity reached the lower branch.This arrangement of three cylinders proved advantageous for energy capture as the upstream cylinder’s vibration response mirrored that of an isolated cylinder,while the response of each downstream cylinder was significantly enhanced.Compared to a single cylinder,the vibration and flow characteristics of this system are markedly more complex.The maximum transverse amplitudes of the downstream cylinders are nearly identical and exceed those observed in a single-cylinder set-up.Depending on the gap spacing,the flow pattern varied:it was in-phase for L=3D,antiphase for L=4D,and exhibited vortex shedding for L=5D.The wake configuration mainly featured double vortex streets for L=3D and evolved into two pairs of double vortex streets for L=5D.Consequently,it well illustrates the coupling mechanism that dynamics characteristics and wake vortex change with gap spacing and reduced velocities.
基金supported by the National Natural Science Foundation of China(Grant Nos.U24B20133 and 62522104)the Beijing Nova Program(Grant No.20230484331).
文摘An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed operator adheres to the physics essence of fiber analysis.The training of the mode-solving operator adopts a hybrid physics-informed and data-driven approach,providing the advantages of strong physical consistency,enhanced prediction accuracy,and reduced data dependency in comparison with purely datadriven methods.Benefiting from the improvements in network input-output mapping formulation,the proposed operator offers broader applicability to different fiber types and greater flexibility for property optimization.Combined with the particle swarm optimization and refractive index optimization,the operator demonstrates its capacity for the inverse design of multi-step-index fibers(MSIFs)and graded-index fibers(GRIFs).For MSIFs,to ensure a low mode crosstalk for short-distance transmission systems,optimized refractive index profiles(RIPs)of both three-ring and four-ring structures are obtained from large structure parameter search spaces.For GRIFs,to ensure a low receiving complexity for long-haul transmission systems,optimized RIP with low root mean square mode group delay is obtained through point-wise fine-tuning.Moreover,the operator is capable of analyzing the effect of dopant diffusion in manufacturing.
基金MUFFINS,MUltiphase Flow-induced Fluid-flexible structure InteractioN in Subsea applications(EP/P033180/1)the PREMIERE programme grant(EP/T000414/1)SMARTRES,Smart assessment,management and optimization of urban geothermal resources(NE/X005607/1).
文摘We propose a novel type of nonlinear solver acceleration for systems of nonlinear partial differential equations(PDEs)that is based on online/adaptive learning.It is applied in the context of multiphase flow in porous media.The proposed method rely on four pillars:(i)dimensionless numbers as input parameters for the machine learning model,(ii)simplified numerical model(two-dimensional)for the offline training,(iii)dynamic control of a nonlinear solver tuning parameter(numerical relaxation),(iv)and online learning for time real-improvement of the machine learning model.This strategy decreases the number of nonlinear iterations by dynamically modifying a single global parameter,the relaxation factor,and by adaptively learning the attributes of each numerical model on-the-run.Furthermore,this work performs a sensitivity study in the dimensionless parameters(machine learning features),assess the efficacy of various machine learning models,demonstrate a decrease in nonlinear iterations using our method in more intricate,realistic three-dimensional models,and fully couple a machine learning model into an open-source multiphase flow simulator achieving up to 85%reduction in computational time.
基金financially supported by National Natural Science Foundation of China(Grant Nos.51379125,51411130131,11432009,and 51490675)the Chang Jiang Scholars Program(Grant No.T2014099)+3 种基金the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23)the Foundation of State key Laboratory of Ocean Engineering(Grant No.GKZD010065)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.2013022)center for HPC at Shanghai Jiao Tong University,and Lloyd’s Register Foundation(LRF)
文摘In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open FOAM.Reynolds-averaged Navier?Stokes(RANS) equations are chosen as governing equations and the volume of fluid(VOF) is employed to capture the two phases interface.Incoming wave group is generated by imposing the boundary conditions of the tank inlet.A spectrum based correction procedure is developed to make the measured spectrum approaching to the target spectrum.This procedure can automatically adjust the wave generation signal based on the measured wave elevation by wave height probe in numerical wave tank.After 3 to 4 iterations,the measured spectrum agrees well with the target one.In order to validate this method,several wave spectra are chosen and validated in the numerical wave tank,with comparison between the final measured and target spectra.In order to investigate a practical situation,a modified Wigley hull is placed in the wave tank with incoming irregular waves.The wave-induced heave and pitch motions are treated by Fourier analysis to obtain motion responses,showing good agreements with the measurements.