The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of sol...For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
Zeolites of *BEA framework topology containing isomorphously substituted Lewis acidic metal centers catalyze the liquid-phase intramolecular Prins cyclization of citronellal with outstanding catalytic activity and (di...Zeolites of *BEA framework topology containing isomorphously substituted Lewis acidic metal centers catalyze the liquid-phase intramolecular Prins cyclization of citronellal with outstanding catalytic activity and (dia-)stereoselectivity to the commercially most valuable product, isopulegol (IPL). Effects of the metal-center identity and solvent type were occasionally noted, yet without systematic studies hitherto reported. Here, characteristic dependences of catalytic activities and stereoselectivities on solvent and metal identity were uncovered over four M(IV)-Beta catalysts (M = Sn, Ti, Zr and Hf) in four distinct solvents (i.e., acetonitrile, tert-butanol, cyclohexane and n-hexane). Zr^(-) and Hf-Beta were the most active in acetonitrile and the most selective (> 90% to IPL) in tert-butanol, though their activities were generally lower than Ti- and Sn-Beta in solvents other than acetonitrile. By comparison, Ti-Beta was inferior to other catalysts in terms of both activity and IPL selectivity (as previously shown) in acetonitrile but became the most active in other solvents, with markedly increased IPL selectivity from 60% to 70%?80%. Combining multiple site discrimination and quantification techniques, turnover frequencies were determined for the first time in this reaction;such site-based activities, coupled with comprehensive kinetic interrogations, not only enabled a rigorous comparison of catalytic activities across M-Beta catalysts but also provided deeper insights into the free energy driving forces as solvent and metal identity are varied. The activity and selectivity trends, as well as those for the adsorption and intrinsic activation parameters are caused by solvent co-binding at the active site (acetonitrile and tert-butanol) and less quantifiable crowding effects (cyclohexane) due to the limited pore space and the need to accommodate relatively bulky reactant-derived moieties. This work exemplifies how the interplay of metal identity and solvent determines the reactivities and selectivities in Lewis-acid-catalyzed reactions within confined spaces.展开更多
Diels-Alder addition of dicyclopentadiene and cyclopentadiene in polar solvents has been studied to produce tricyclopentadiene(TCPD) that is a potential high-density fuel precursor. GC and MS analysis shows that the...Diels-Alder addition of dicyclopentadiene and cyclopentadiene in polar solvents has been studied to produce tricyclopentadiene(TCPD) that is a potential high-density fuel precursor. GC and MS analysis shows that the adducts contain two isomers, namely exo- and endo-TCPD. Theoretical simulation shows that although the transition state of endo-TCPD has a lower activation energy, exo-TCPD is thermodynamically preferred. Polar solvents can accelerate the reaction rate and improve the exo/endo ratio of TCPD because the transition state of exo-TCPD has a higher polarity than that of endo-TCPD. The solvent effect follows the order of polarity: benzyl methanol〉cyclohexanone〉toluene. The conversion rises when the temperature ranges from 120 to 150 ℃, but the selectivity of TCPD slightly decreases. Increasing the pressure can improve the conversion but the exo/endo ratio of TCPD is unchanged. The apparent kinetics in different solvents was determined via nonlinear regression. The activation energies are 99.47, 101.15, and 107.32 kJ/mol for benzyl methanol, cyclohexanone, and toluene, respectively. The optimal reaction conditions are as follows: benzyl methanol as solvent, temperature 150 ℃, and pressure 900 kPa. After an 11-hour reaction, a conversion of 58.0%, a TCPD selectivity of 95.7%, and an exo/endo ratio of 1/5.3 has been obtained.展开更多
The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar...The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific展开更多
Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C...Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.展开更多
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying de...Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.展开更多
A facile, efficient and novel approach to access 2-substituted-N1-carbethoxy-2,3-dihydro-4(1H)-quinazolinones was developed by condensation of substituted N-carbethoxyanthranilamide with alkyl, aromatic or heteroaro...A facile, efficient and novel approach to access 2-substituted-N1-carbethoxy-2,3-dihydro-4(1H)-quinazolinones was developed by condensation of substituted N-carbethoxyanthranilamide with alkyl, aromatic or heteroaromatic aldehydes in the refluxing 2,2,2- trifluoroethanol or hexafluoroisopropanol using p-toluenesulfonic acid as catalyst.展开更多
Sodium paranitrophenolate dihydrate (NPNa·2H2O) is an excellent semiorganic nonlinear optical (NLO) material, crystallizes both in water and methanol with high degree of transparency. Good optical quality single ...Sodium paranitrophenolate dihydrate (NPNa·2H2O) is an excellent semiorganic nonlinear optical (NLO) material, crystallizes both in water and methanol with high degree of transparency. Good optical quality single crystals of dimension upto 18 mm×6 mm×3 mm are obtained by isothermal solvent evaporation technique. The solubility of the crystal in different solvents was measured gravimetrically. The single crystals of NPNa·2H2O show variation in physical properties and growth rate in different solvents. Methanol or ethanol solution yields crystals of bipyramidal shape with clear morphology. However, methanol grown crystal is exhibiting improved hardness parameters and possesses excellent thermal stability as compared to water grown crystals. The effects of solvent on hardness parameter along with thermal and optical properties of NPNa·2H2O was revealed in this paper.展开更多
Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morph...Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.展开更多
Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecula...Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecular models.Herein,by taking the case study of nucleophilic addition reaction in aqueous solution,we extend the proposed multiscale reaction density functional theory(RxDFT)method to investigate the intrinsic free energy profile and total free energy profile,and study the solvent effect on the activation and reaction free energy for the nucleophilic addition reactions of hydroxide anion with methanal and carbon dioxide in aqueous solution.The predictions of the free energy profile in aqueous solution for these two nucleophilic addition reactions from RxDFT have a satisfactory agreement with the results from the RISM and MD-FEP simulation.Meanwhile,the solvent effect is successfully addressed by examining the difference of the free energy profile between the gas phase and aqueous phase.In addition,we investigate the solvent effect on the reactions occurred near solid-liquid interfaces.It is shown that the activation free energy is significantly depressed when reaction takes place in the region within 10A distance to the substrate surface owing to the decrease of hydration free energy at the solid-liquid interface.展开更多
Ciprofloxacin(CIP), moxifoxacin(MOX) and enrofloxacin(ENR) were selected as typical fluoroquinolones(FQs) to analyze the excitation-enhancing effect and mechanism of solvents on FQs' electron transition based...Ciprofloxacin(CIP), moxifoxacin(MOX) and enrofloxacin(ENR) were selected as typical fluoroquinolones(FQs) to analyze the excitation-enhancing effect and mechanism of solvents on FQs' electron transition based on quantum chemical calculations. The UV spectra of three FQs in gas and five different solvents(water, cyclohexane, dimethylsulfoxide, methanol, acetone) were calculated using Gaussian 09 software. The transition mechanisms of FQs' main electron transitions were analyzed by natural bond orbital(NBO) theory, and the solvent effect on each electron transition was assessed qualitatively and quantitatively by sensitivity analysis and an established index system. The excitation enhancing mechanism of solvent on electron transitions of FQs was analyzed from the view of photo-induced reactions between solvent and FQs molecules. The results show that there are two main transitions located in the spectrum ranges of 300~380 and 240~300 nm for each FQ in any medium, which are assigned as n →π* and π→π* electron transitions, respectively. By comparison, the n →π* transition is more sensitive to solvent because of the energy transfer between solvent molecules and FQs, but the solvent effect on the π→π* transition is stronger than on the n →π* transition. The sequence of affected extent of solvent effect on electron transition was CIP 〉 MOX 〉 ENR, and the sequence of solvent effect was water 〉 DMSO 〉 methanol 〉 acetone 〉 cyclohexane(stronger solvent effect with increasing the dielectric constant of solvent). From the view of photo-induced reactions, the reaction between FQs*T1 and solvent*T1 has the decisive regulatory effect on the n →π* transition of FQs in solvent, and the reaction between FQsS0 and solvent*TI has an enhancing effect on the π→π* transition.展开更多
The excited-state symmetry-breaking charge transfer (SBCT) dynamics in quadrupolar or octupolar molecules without clear infrared markers is usually hard to be tracked directly. In this work, on the basis of the evolut...The excited-state symmetry-breaking charge transfer (SBCT) dynamics in quadrupolar or octupolar molecules without clear infrared markers is usually hard to be tracked directly. In this work, on the basis of the evolution of instantaneous emission dipole moment obtained by femtosecond transient fluorescence spectroscopy, we presented a real-time characterization of the solvent-induced SBCT dynamics in an octupolar triphenylamine derivative. While the emission dipole moment of the octupolar trimer in weakly polar toluene changes little during the excited-state relaxation, it exhibits a fast reduction in a few picoseconds in strongly polar tetrahydrofuran. In comparison with the uorescence dynamics of dipolar monomer, we deduced that the emitting state of the octupolar trimer in strongly polar solvent, which undergoes solvent-induced structural uctuation, changes from exciton-coupled octupolar to excitation localized dipolar symmetry. In weakly polar solvent, the octupolar symmetry of the trimer is largely preserved during the solvation stabilization.展开更多
A remarkable solvent effect in a single-phase synthesis of monodisperse amine-capped Au nanoparticles is demonstrated.Oleylamine-capped Au nanoparticles were prepared via the reduction of HAuCU by an amine-borane comp...A remarkable solvent effect in a single-phase synthesis of monodisperse amine-capped Au nanoparticles is demonstrated.Oleylamine-capped Au nanoparticles were prepared via the reduction of HAuCU by an amine-borane complex in the presence of oleylamine in an organic solvent.When linear or planar hydrocarbon(e.g.,n-hexane,n-octane,1-octadecylene,benzene,and toluene) was used as the solvent, high-quality monodisperse Au nanoparticles with tunable sizes were obtained.However,Au nanoparticles with poor size dispersity were obtained when tetralin,chloroform or cyclohexane was used as the solvent.The revealed solvent effect allows the controlled synthesis of monodisperse Au nanoparticles with tunable size of 3-10 nm.展开更多
The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent....The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent. The influence of solvent is due to the change of the adsorption quantity and adsorption intensity.展开更多
Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- ...Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.展开更多
The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the t...The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed展开更多
Solvent effect on the conformations of-bis(4-nitrophenoxy)-alkanes w th different chain Lengths(Nn)was studied by UV spectra.In poor solvents such as EG-H_2O and THF-H_2O,with the water content higher than 50%,the K-b...Solvent effect on the conformations of-bis(4-nitrophenoxy)-alkanes w th different chain Lengths(Nn)was studied by UV spectra.In poor solvents such as EG-H_2O and THF-H_2O,with the water content higher than 50%,the K-bands of N_4. N,N_6 and N_(10)in the UV absorption spectra shifted to longer wavelengths as compared wth 4-nitrophenoxyethane(N_0).It is suggested that in poor solvents the two aromatic gr(?)ps are close to each other in parallel,forming ground state complexes.The K- bead of N_4 showed a blue shift from that of N_0 when the water content was around 5%,probably attributable to a conformation with the nitro group of one benzene ring sit(?)ing on the plane of the other benzene ring.展开更多
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金financially supported by the National Natural Science Foundation of China(U21A20313,22222807)。
文摘For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
文摘Zeolites of *BEA framework topology containing isomorphously substituted Lewis acidic metal centers catalyze the liquid-phase intramolecular Prins cyclization of citronellal with outstanding catalytic activity and (dia-)stereoselectivity to the commercially most valuable product, isopulegol (IPL). Effects of the metal-center identity and solvent type were occasionally noted, yet without systematic studies hitherto reported. Here, characteristic dependences of catalytic activities and stereoselectivities on solvent and metal identity were uncovered over four M(IV)-Beta catalysts (M = Sn, Ti, Zr and Hf) in four distinct solvents (i.e., acetonitrile, tert-butanol, cyclohexane and n-hexane). Zr^(-) and Hf-Beta were the most active in acetonitrile and the most selective (> 90% to IPL) in tert-butanol, though their activities were generally lower than Ti- and Sn-Beta in solvents other than acetonitrile. By comparison, Ti-Beta was inferior to other catalysts in terms of both activity and IPL selectivity (as previously shown) in acetonitrile but became the most active in other solvents, with markedly increased IPL selectivity from 60% to 70%?80%. Combining multiple site discrimination and quantification techniques, turnover frequencies were determined for the first time in this reaction;such site-based activities, coupled with comprehensive kinetic interrogations, not only enabled a rigorous comparison of catalytic activities across M-Beta catalysts but also provided deeper insights into the free energy driving forces as solvent and metal identity are varied. The activity and selectivity trends, as well as those for the adsorption and intrinsic activation parameters are caused by solvent co-binding at the active site (acetonitrile and tert-butanol) and less quantifiable crowding effects (cyclohexane) due to the limited pore space and the need to accommodate relatively bulky reactant-derived moieties. This work exemplifies how the interplay of metal identity and solvent determines the reactivities and selectivities in Lewis-acid-catalyzed reactions within confined spaces.
基金Supported by Fundamental Research Project of Commission of ScienceTechnology and Industry for National Defense of China(NoA1420060192)
文摘Diels-Alder addition of dicyclopentadiene and cyclopentadiene in polar solvents has been studied to produce tricyclopentadiene(TCPD) that is a potential high-density fuel precursor. GC and MS analysis shows that the adducts contain two isomers, namely exo- and endo-TCPD. Theoretical simulation shows that although the transition state of endo-TCPD has a lower activation energy, exo-TCPD is thermodynamically preferred. Polar solvents can accelerate the reaction rate and improve the exo/endo ratio of TCPD because the transition state of exo-TCPD has a higher polarity than that of endo-TCPD. The solvent effect follows the order of polarity: benzyl methanol〉cyclohexanone〉toluene. The conversion rises when the temperature ranges from 120 to 150 ℃, but the selectivity of TCPD slightly decreases. Increasing the pressure can improve the conversion but the exo/endo ratio of TCPD is unchanged. The apparent kinetics in different solvents was determined via nonlinear regression. The activation energies are 99.47, 101.15, and 107.32 kJ/mol for benzyl methanol, cyclohexanone, and toluene, respectively. The optimal reaction conditions are as follows: benzyl methanol as solvent, temperature 150 ℃, and pressure 900 kPa. After an 11-hour reaction, a conversion of 58.0%, a TCPD selectivity of 95.7%, and an exo/endo ratio of 1/5.3 has been obtained.
文摘The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific
文摘Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.
基金supported by 863 Project(No.2006AA05Z102)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.707050)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20060610023)Chengdu Natural Science Foundation (Nos.06GGYB449GX-030,and 07GGZD139GX)
文摘Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.
基金We are grateful to the National Natural Science Foundation of China(No.30672540)the Natural Science Foundation of Beijing(No.7072048)for financial support.
文摘A facile, efficient and novel approach to access 2-substituted-N1-carbethoxy-2,3-dihydro-4(1H)-quinazolinones was developed by condensation of substituted N-carbethoxyanthranilamide with alkyl, aromatic or heteroaromatic aldehydes in the refluxing 2,2,2- trifluoroethanol or hexafluoroisopropanol using p-toluenesulfonic acid as catalyst.
文摘Sodium paranitrophenolate dihydrate (NPNa·2H2O) is an excellent semiorganic nonlinear optical (NLO) material, crystallizes both in water and methanol with high degree of transparency. Good optical quality single crystals of dimension upto 18 mm×6 mm×3 mm are obtained by isothermal solvent evaporation technique. The solubility of the crystal in different solvents was measured gravimetrically. The single crystals of NPNa·2H2O show variation in physical properties and growth rate in different solvents. Methanol or ethanol solution yields crystals of bipyramidal shape with clear morphology. However, methanol grown crystal is exhibiting improved hardness parameters and possesses excellent thermal stability as compared to water grown crystals. The effects of solvent on hardness parameter along with thermal and optical properties of NPNa·2H2O was revealed in this paper.
基金supported by Chongqing Newcent New Materials Co.,Ltd.,China (No.2021GKF-0708).
文摘Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.
基金supported by National Natural Science Foundation of China(Nos.91934302,21878078 and 21808056)。
文摘Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecular models.Herein,by taking the case study of nucleophilic addition reaction in aqueous solution,we extend the proposed multiscale reaction density functional theory(RxDFT)method to investigate the intrinsic free energy profile and total free energy profile,and study the solvent effect on the activation and reaction free energy for the nucleophilic addition reactions of hydroxide anion with methanal and carbon dioxide in aqueous solution.The predictions of the free energy profile in aqueous solution for these two nucleophilic addition reactions from RxDFT have a satisfactory agreement with the results from the RISM and MD-FEP simulation.Meanwhile,the solvent effect is successfully addressed by examining the difference of the free energy profile between the gas phase and aqueous phase.In addition,we investigate the solvent effect on the reactions occurred near solid-liquid interfaces.It is shown that the activation free energy is significantly depressed when reaction takes place in the region within 10A distance to the substrate surface owing to the decrease of hydration free energy at the solid-liquid interface.
文摘Ciprofloxacin(CIP), moxifoxacin(MOX) and enrofloxacin(ENR) were selected as typical fluoroquinolones(FQs) to analyze the excitation-enhancing effect and mechanism of solvents on FQs' electron transition based on quantum chemical calculations. The UV spectra of three FQs in gas and five different solvents(water, cyclohexane, dimethylsulfoxide, methanol, acetone) were calculated using Gaussian 09 software. The transition mechanisms of FQs' main electron transitions were analyzed by natural bond orbital(NBO) theory, and the solvent effect on each electron transition was assessed qualitatively and quantitatively by sensitivity analysis and an established index system. The excitation enhancing mechanism of solvent on electron transitions of FQs was analyzed from the view of photo-induced reactions between solvent and FQs molecules. The results show that there are two main transitions located in the spectrum ranges of 300~380 and 240~300 nm for each FQ in any medium, which are assigned as n →π* and π→π* electron transitions, respectively. By comparison, the n →π* transition is more sensitive to solvent because of the energy transfer between solvent molecules and FQs, but the solvent effect on the π→π* transition is stronger than on the n →π* transition. The sequence of affected extent of solvent effect on electron transition was CIP 〉 MOX 〉 ENR, and the sequence of solvent effect was water 〉 DMSO 〉 methanol 〉 acetone 〉 cyclohexane(stronger solvent effect with increasing the dielectric constant of solvent). From the view of photo-induced reactions, the reaction between FQs*T1 and solvent*T1 has the decisive regulatory effect on the n →π* transition of FQs in solvent, and the reaction between FQsS0 and solvent*TI has an enhancing effect on the π→π* transition.
基金supported by the National Natural Science Foundation of China (No.21673252, No.21333012, No.21672211, and No.21773252, No.21827803)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB12020200)
文摘The excited-state symmetry-breaking charge transfer (SBCT) dynamics in quadrupolar or octupolar molecules without clear infrared markers is usually hard to be tracked directly. In this work, on the basis of the evolution of instantaneous emission dipole moment obtained by femtosecond transient fluorescence spectroscopy, we presented a real-time characterization of the solvent-induced SBCT dynamics in an octupolar triphenylamine derivative. While the emission dipole moment of the octupolar trimer in weakly polar toluene changes little during the excited-state relaxation, it exhibits a fast reduction in a few picoseconds in strongly polar tetrahydrofuran. In comparison with the uorescence dynamics of dipolar monomer, we deduced that the emitting state of the octupolar trimer in strongly polar solvent, which undergoes solvent-induced structural uctuation, changes from exciton-coupled octupolar to excitation localized dipolar symmetry. In weakly polar solvent, the octupolar symmetry of the trimer is largely preserved during the solvation stabilization.
基金the MOST of China(Nos.2011CB932403, 2009CB930703)the NSFC(Nos.21131005,21021061, 20925103,20923004)the Fok Ying Tung Education Foundation (No.121011) for the financial support
文摘A remarkable solvent effect in a single-phase synthesis of monodisperse amine-capped Au nanoparticles is demonstrated.Oleylamine-capped Au nanoparticles were prepared via the reduction of HAuCU by an amine-borane complex in the presence of oleylamine in an organic solvent.When linear or planar hydrocarbon(e.g.,n-hexane,n-octane,1-octadecylene,benzene,and toluene) was used as the solvent, high-quality monodisperse Au nanoparticles with tunable sizes were obtained.However,Au nanoparticles with poor size dispersity were obtained when tetralin,chloroform or cyclohexane was used as the solvent.The revealed solvent effect allows the controlled synthesis of monodisperse Au nanoparticles with tunable size of 3-10 nm.
文摘The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent. The influence of solvent is due to the change of the adsorption quantity and adsorption intensity.
基金The financial support from the National Natural Science Foundation of China(Nos.20971046 and 21171057)
文摘Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.
文摘The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed
文摘Solvent effect on the conformations of-bis(4-nitrophenoxy)-alkanes w th different chain Lengths(Nn)was studied by UV spectra.In poor solvents such as EG-H_2O and THF-H_2O,with the water content higher than 50%,the K-bands of N_4. N,N_6 and N_(10)in the UV absorption spectra shifted to longer wavelengths as compared wth 4-nitrophenoxyethane(N_0).It is suggested that in poor solvents the two aromatic gr(?)ps are close to each other in parallel,forming ground state complexes.The K- bead of N_4 showed a blue shift from that of N_0 when the water content was around 5%,probably attributable to a conformation with the nitro group of one benzene ring sit(?)ing on the plane of the other benzene ring.