In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development...Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear...The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear method,we systematically construct single-and double-periodic lump solutions.To provide a detailed insight into the dynamic behavior of the nonlinear waves,we explore diverse mixed solutions,including bright-dark,W-shaped,multi-peak,and bright soliton solutions.Building upon single-periodic lump solutions,we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method.Moreover,we obtain the interaction solutions involving lumps,periodic lumps,and solitons.The interactions among two solitons,multiple lumps,and mixed waves are illustrated and analyzed.Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones.These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.展开更多
The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd...The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.展开更多
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf...Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.展开更多
The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WD...The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.展开更多
The N-periodic wave solvability problem for the N=1 supersymmetric Sawada–Kotera–Ramani equation is considered by combining the Hirota's bilinear method and the super Riemann theta function.The constraint equati...The N-periodic wave solvability problem for the N=1 supersymmetric Sawada–Kotera–Ramani equation is considered by combining the Hirota's bilinear method and the super Riemann theta function.The constraint equations and unknown parameters are redefined,and the numerical calculation process of the N-periodic wave solutions is derived.It has been verified that under certain conditions,the asymptotic relations between N-periodic wave solutions and N-soliton solutions can be established.Some numerical solutions of three-periodic wave are presented.Under the influence of the Grassmann variable,the three-periodic wave solutions will generate an influence band in the middle region,and the amplitude becomes bigger as the distance from the influence band increases.展开更多
The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of...The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of[3-4-1],followed by breather,lump and their interaction solutions by using double-layer models of[3-3-2-1]and[3-3-3-1],respectively.A significant innovation introduced in this work is the computation of periodic cross-rational solutions through the design of a novel[3-(2+2)-4-1]model,where a specific hidden layer is partitioned into two segments for subsequent operations.Three-dimensional and density figures of the solutions are given alongside an analysis of the dynamics of these solutions.展开更多
Poly(1-butyl-3-vinylimidazolium bromide)is a polymerized ionic liquid(PILs),a relatively new class of materials that combines the attractive properties of ionic liquids(ILs)and polyelectrolytes and finds wide applicat...Poly(1-butyl-3-vinylimidazolium bromide)is a polymerized ionic liquid(PILs),a relatively new class of materials that combines the attractive properties of ionic liquids(ILs)and polyelectrolytes and finds wide applications.The backbone of this PIL is composed of quaternary imidazolium salts,which are among the most promising and popular ILs.However,little is known about the physicochemical characteristics of the aqueous solutions of this PIL.In this study,we synthesized and characterized samples of this PIL and obtained experimental data on the viscosity,static and dynamic light scattering,and nuclear magnetic resonance diffusometry for aqueous and aqueous KBr solutions with varying polymer contents at T=298.15 K.We discuss the effects of the polymer concentration and salinity on the behavior of the solution.展开更多
This study investigates the effects of varying Sc content on phase composition,corrosion resistance and passive film characteristic of Al_(1.2)CoCrFeNiSc_(x)(x=0,0.1,0.2,0.3)high-entropy alloys in 0.5 mol/L H_(2)SO_(4...This study investigates the effects of varying Sc content on phase composition,corrosion resistance and passive film characteristic of Al_(1.2)CoCrFeNiSc_(x)(x=0,0.1,0.2,0.3)high-entropy alloys in 0.5 mol/L H_(2)SO_(4) solution.The addition of Sc causes the alloys to form a Laves phase which is a(Ni,Co)_(2)Sc intermetallic compound with face centred cubic(FCC)structure and lattice parameter of 0.695 nm.During the potentiodynamic polarization process,Laves phase is severely corroded due to its large grain orientation spread value and high electrochemical activity.Sc deteriorates the corrosion resistance of the alloy primarily by significantly accelerating the corrosion rate rather than altering the corrosion tendency.Al_(1.2)CoCrFeNiSc_(x) alloys exhibit poorer corrosion resistance in 0.5 mol/L H_(2)SO_(4) than in 3.5 wt.%NaCl solution,with severe intergranular corrosion observed on the alloy surface.The passive films on Sc-free alloys primarily composed of Al_(2)O_(3) and Cr_(2)O_(3),while for Sc-containing alloys,the film mainly contains Al_(2)O_(3),Cr_(2)O_(3) and Sc_(2)O_(3).In addition,the passive films on Sc-free alloys behave as an n-type semiconductor,while the passive films on Sc-containing alloys surface exhibit the electronic characteristics of p-n junctions.As the Sc content rises,the defect density in passive film increases from 10^(21) cm^(-3) to 10^(23) cm^(-3),which leads to a less compact and less protective passive film,ultimately decreasing the alloy’s corrosion resistance.This work holds significant guiding significance for the engineering application of high-entropy alloys in acidic environments and is conducive to the development of high-performance corrosion-resistant alloys.展开更多
We present the existence/non-existence criteria for large-amplitude boundary layer solutions to the inflow problem of the one-dimensional(1D)full compressible NavierStokes equations on a half line R_+.Instead of the c...We present the existence/non-existence criteria for large-amplitude boundary layer solutions to the inflow problem of the one-dimensional(1D)full compressible NavierStokes equations on a half line R_+.Instead of the classical center manifold approach for the existence of small-amplitude boundary layer solutions in the previous results,the delicate global phase plane analysis,based on the qualitative theory of ODEs,is utilized to obtain the sufficient and necessary conditions for the existence/non-existence of large boundary layer solutions to the half-space inflow problem when the right end state belongs to the supersonic,transonic,and subsonic regions,respectively,which completely answers the existence/nonexistence of boundary layer solutions to the half-space inflow problem of 1D full compressible Navier-Stokes equations.展开更多
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were...The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.展开更多
The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and...The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.展开更多
In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and re...In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and reduce the corresponding(2+1)-dimensional fractional partial differential equations with the Riemann–Liouville fractional derivative to(1+1)-dimensional counterparts with the Erdélyi–Kober fractional derivative.Then,we obtain the power series solutions of the reduced equations,prove their convergence and analyze their dynamic behavior graphically.In addition,the conservation laws for all the obtained Lie symmetries are constructed using the new conservation theorem and the generalization of Noether operators.展开更多
Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl comp...Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl composite joints in the next generation of aerospace applications.So enhanced K4169/TiAl composite joints were investigated by vacuum brazed with(Ni_(53.33)Cr_(20)B_(16.67)Si_(10)/Zr_(25)Ti_(18.75)Ta_(12.5)Ni_(25)Cu_(18.75))composite filler metal(CFM)designed based on cluster-plus-glue-atom model.The shear strength of the joint reached 485 MPa,comparable to the 491 MPa of TiAl substrate.The flat and brittle-hard diffusion reaction layer between Zones I and II was eliminated,simultaneously generating CrB4 dispersion strengthening due to the CFM developed with the interfacial solid-liquid space-time hysteresis effect.In Zones II and III,IMCs all transformed into Niss(Cr,Fe)_([0–88]),Niss(Ti,Al)_([004]),and Niss(Zr,Si)_([11–2])of circular and oval shapes through isothermal solidification.Meanwhile,the residual stresses and hardness were distributed in reticulated cladding characteristics.Thereby,lattice distortion led to solid solution strengthening and increased plastic toughness through crack termination and bridging mechanisms,which inhibited dislocations from plugging and crack propagation.Various interfaces in ZoneⅣwere regulated into semi-and coherent interfaces.Ni3(Ti,Al)/(Ni,Ti,Al)and(Ni,Ti,Al)/AlNi_(2)Ti were composed of higher interfacial bonding energy(2.771 J/m^(2),2.547 J/m^(2))and Ni-Ni covalent bonds.Interfacial covalent bonding and large interfacial bonding energy coupling strengthened Zone IV.Consequently,cracks initiated at the(Ni,Ti,Al)[013]/Ti3Al_([010])and expanded rapidly into TiAl substrate.Therefore,applying this method to design CFMs and regulate the phase,grain morphology,and interface’s fine structure could provide new pathways for dissimilar hard-to-join metals.展开更多
In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact soluti...In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.展开更多
Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)ca...Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.展开更多
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.
基金supported by the China Agriculture Research System(Grant No.CARS-23-D06)the Key Research and Development Program of Shaanxi Province(Grant Nos.2024NC2-GJHX-29 and 2024NC-ZDCYL-05-08)Shaanxi Agricultural Collaborative Innovation and Extension Alliance Project(Grant No.LMZD202202).
文摘Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
基金supported by the Applied Basic Research Program of Shanxi Province,China(Grant Nos.202403021212253 and 202203021221217).
文摘The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear method,we systematically construct single-and double-periodic lump solutions.To provide a detailed insight into the dynamic behavior of the nonlinear waves,we explore diverse mixed solutions,including bright-dark,W-shaped,multi-peak,and bright soliton solutions.Building upon single-periodic lump solutions,we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method.Moreover,we obtain the interaction solutions involving lumps,periodic lumps,and solitons.The interactions among two solitons,multiple lumps,and mixed waves are illustrated and analyzed.Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones.These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.
基金Project supported by the State Key Research Project of Shandong Natural Science Foundation(ZR2020KB019)the fund of"Two-Hundred Talent"Plan of Yantai City+1 种基金the National Natural Science Foundation of China(11974013)the Natural Science Foundation of Fujian Province(2022J011270)。
文摘The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.
基金supported by the National Natural Science Foundation(No.51678291)the Basic Science(Natural Science)Research in Higher Education in Jiangsu Province(No.23KJA610003)the High-level Scientific Research Foundation for the introduction of talent in Nanjing Institute of Technology(No.YKJ201999)。
文摘Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103,42174090,42250101,42250102,and 41774091)the Macao Foundation+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.12101572 and 12371256)2024 Shanxi Province Graduate Innovation Project(Grant No.2024KY615)the Fundamental Research Program of Shanxi Province of China(Grant No.202403021211002)。
文摘The N-periodic wave solvability problem for the N=1 supersymmetric Sawada–Kotera–Ramani equation is considered by combining the Hirota's bilinear method and the super Riemann theta function.The constraint equations and unknown parameters are redefined,and the numerical calculation process of the N-periodic wave solutions is derived.It has been verified that under certain conditions,the asymptotic relations between N-periodic wave solutions and N-soliton solutions can be established.Some numerical solutions of three-periodic wave are presented.Under the influence of the Grassmann variable,the three-periodic wave solutions will generate an influence band in the middle region,and the amplitude becomes bigger as the distance from the influence band increases.
基金supported by the National Natural Science Foundation of China under Grant No.12375006the Weimu Technology Company Limited of Hangzhou of China under Grant No.KYY-HX-20240495。
文摘The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of[3-4-1],followed by breather,lump and their interaction solutions by using double-layer models of[3-3-2-1]and[3-3-3-1],respectively.A significant innovation introduced in this work is the computation of periodic cross-rational solutions through the design of a novel[3-(2+2)-4-1]model,where a specific hidden layer is partitioned into two segments for subsequent operations.Three-dimensional and density figures of the solutions are given alongside an analysis of the dynamics of these solutions.
基金financially supported by the Russian Science Foundation(No.20-13-00038).
文摘Poly(1-butyl-3-vinylimidazolium bromide)is a polymerized ionic liquid(PILs),a relatively new class of materials that combines the attractive properties of ionic liquids(ILs)and polyelectrolytes and finds wide applications.The backbone of this PIL is composed of quaternary imidazolium salts,which are among the most promising and popular ILs.However,little is known about the physicochemical characteristics of the aqueous solutions of this PIL.In this study,we synthesized and characterized samples of this PIL and obtained experimental data on the viscosity,static and dynamic light scattering,and nuclear magnetic resonance diffusometry for aqueous and aqueous KBr solutions with varying polymer contents at T=298.15 K.We discuss the effects of the polymer concentration and salinity on the behavior of the solution.
基金Project(ZR2021QE136)supported by the Natural Science Foundation of Shandong Province,ChinaProject(52301106)supported by the National Natural Science Foundation of China+1 种基金Project(2022KJ273)supported by the Development Plan of Shandong Province Young Innovation Team of Higher Education Institutions,ChinaProject(2024HWYQ-074)supported by the Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program(Overseas),China。
文摘This study investigates the effects of varying Sc content on phase composition,corrosion resistance and passive film characteristic of Al_(1.2)CoCrFeNiSc_(x)(x=0,0.1,0.2,0.3)high-entropy alloys in 0.5 mol/L H_(2)SO_(4) solution.The addition of Sc causes the alloys to form a Laves phase which is a(Ni,Co)_(2)Sc intermetallic compound with face centred cubic(FCC)structure and lattice parameter of 0.695 nm.During the potentiodynamic polarization process,Laves phase is severely corroded due to its large grain orientation spread value and high electrochemical activity.Sc deteriorates the corrosion resistance of the alloy primarily by significantly accelerating the corrosion rate rather than altering the corrosion tendency.Al_(1.2)CoCrFeNiSc_(x) alloys exhibit poorer corrosion resistance in 0.5 mol/L H_(2)SO_(4) than in 3.5 wt.%NaCl solution,with severe intergranular corrosion observed on the alloy surface.The passive films on Sc-free alloys primarily composed of Al_(2)O_(3) and Cr_(2)O_(3),while for Sc-containing alloys,the film mainly contains Al_(2)O_(3),Cr_(2)O_(3) and Sc_(2)O_(3).In addition,the passive films on Sc-free alloys behave as an n-type semiconductor,while the passive films on Sc-containing alloys surface exhibit the electronic characteristics of p-n junctions.As the Sc content rises,the defect density in passive film increases from 10^(21) cm^(-3) to 10^(23) cm^(-3),which leads to a less compact and less protective passive film,ultimately decreasing the alloy’s corrosion resistance.This work holds significant guiding significance for the engineering application of high-entropy alloys in acidic environments and is conducive to the development of high-performance corrosion-resistant alloys.
基金partially supported by the NSFC(12171459,12288201,12090014,12421001)CAS Project for Young Scientists in Basic Research(YSBR-031)。
文摘We present the existence/non-existence criteria for large-amplitude boundary layer solutions to the inflow problem of the one-dimensional(1D)full compressible NavierStokes equations on a half line R_+.Instead of the classical center manifold approach for the existence of small-amplitude boundary layer solutions in the previous results,the delicate global phase plane analysis,based on the qualitative theory of ODEs,is utilized to obtain the sufficient and necessary conditions for the existence/non-existence of large boundary layer solutions to the half-space inflow problem when the right end state belongs to the supersonic,transonic,and subsonic regions,respectively,which completely answers the existence/nonexistence of boundary layer solutions to the half-space inflow problem of 1D full compressible Navier-Stokes equations.
基金supported by the National Research Foundation grant funded by the Korean government(No,2023R1A2C2007190,RS-2024-00398068)partially funded by the Natural Science Foundation of Shandong Province,China(No.ZR2022QE206).
文摘The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.
文摘The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.
基金supported by the State Key Program of the National Natural Science Foundation of China(72031009).
文摘In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and reduce the corresponding(2+1)-dimensional fractional partial differential equations with the Riemann–Liouville fractional derivative to(1+1)-dimensional counterparts with the Erdélyi–Kober fractional derivative.Then,we obtain the power series solutions of the reduced equations,prove their convergence and analyze their dynamic behavior graphically.In addition,the conservation laws for all the obtained Lie symmetries are constructed using the new conservation theorem and the generalization of Noether operators.
基金financially supported by the National Natural Science Foundation of China(Nos.52275314 and 52075074).
文摘Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl composite joints in the next generation of aerospace applications.So enhanced K4169/TiAl composite joints were investigated by vacuum brazed with(Ni_(53.33)Cr_(20)B_(16.67)Si_(10)/Zr_(25)Ti_(18.75)Ta_(12.5)Ni_(25)Cu_(18.75))composite filler metal(CFM)designed based on cluster-plus-glue-atom model.The shear strength of the joint reached 485 MPa,comparable to the 491 MPa of TiAl substrate.The flat and brittle-hard diffusion reaction layer between Zones I and II was eliminated,simultaneously generating CrB4 dispersion strengthening due to the CFM developed with the interfacial solid-liquid space-time hysteresis effect.In Zones II and III,IMCs all transformed into Niss(Cr,Fe)_([0–88]),Niss(Ti,Al)_([004]),and Niss(Zr,Si)_([11–2])of circular and oval shapes through isothermal solidification.Meanwhile,the residual stresses and hardness were distributed in reticulated cladding characteristics.Thereby,lattice distortion led to solid solution strengthening and increased plastic toughness through crack termination and bridging mechanisms,which inhibited dislocations from plugging and crack propagation.Various interfaces in ZoneⅣwere regulated into semi-and coherent interfaces.Ni3(Ti,Al)/(Ni,Ti,Al)and(Ni,Ti,Al)/AlNi_(2)Ti were composed of higher interfacial bonding energy(2.771 J/m^(2),2.547 J/m^(2))and Ni-Ni covalent bonds.Interfacial covalent bonding and large interfacial bonding energy coupling strengthened Zone IV.Consequently,cracks initiated at the(Ni,Ti,Al)[013]/Ti3Al_([010])and expanded rapidly into TiAl substrate.Therefore,applying this method to design CFMs and regulate the phase,grain morphology,and interface’s fine structure could provide new pathways for dissimilar hard-to-join metals.
文摘In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.
基金This work was carried out in the framework of PAPIIT-UNAM(IN-205823)project.
文摘Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.