期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides 被引量:3
1
作者 Qi Yan Liang Gao +1 位作者 Jiang Tang Huan Liu 《Journal of Semiconductors》 EI CAS CSCD 2019年第11期39-47,共9页
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,b... Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare. 展开更多
关键词 solution-processable metal chalcogenides gas sensor PHOTODETECTOR healthcare
在线阅读 下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
2
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
在线阅读 下载PDF
Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing 被引量:13
3
作者 Ki Chang Kwon Ji Hyun Baek +2 位作者 Kootak Hong Soo Young Kim Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期29-58,共30页
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti... Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs. 展开更多
关键词 Two-dimensional materials MEMRISTORS Neuromorphic computing Artificial synapses Transition metal chalcogenides
在线阅读 下载PDF
Recent advances in transition metal chalcogenides for lithium-ion capacitors 被引量:8
4
作者 Lei Wang Xiong Zhang +5 位作者 Chen Li Xian-Zhong Sun Kai Wang Fang-Yuan Su Fang-Yan Liu Yan-Wei Ma 《Rare Metals》 SCIE EI CAS CSCD 2022年第9期2971-2984,共14页
Transition metal chalcogenides(TMCs)and TMCs-based nanocomposites have attracted extensive attention due to their versatile material species,low cost,and rich physical and chemical characteristics.As anode materials o... Transition metal chalcogenides(TMCs)and TMCs-based nanocomposites have attracted extensive attention due to their versatile material species,low cost,and rich physical and chemical characteristics.As anode materials of lithium-ion capacitors(LICs),TMCs have exhibited high theoretical capacities and pseudocapacitance storage mechanism.However,there are many intrinsic challenges,such as low electrical conductivity,repeatedly high-volume changes and sluggish ionic diffusion kinetics.Hence,many traditional and unconventional techniques have been reported to solve these critical problems,and many innovative strategies are also used to prepare high quality anode materials for LICs.In this mini review,a detailed family member list and comparison of TMCs in the field of lithium-ion capacitors have been summarized firstly.Then,many rectification stratagems and recent researches of TMCs have been exhibited and discussed.In the end,as an outcome of these discussions,some further challenges and perspectives are envisioned to promote the application of TMCs materials for lithium-ion c apacitors. 展开更多
关键词 Energy storage Transition metal chalcogenides(TMCs) Lithium-ion capacitors(LICs) Performance optimization
原文传递
Facet-engineered growth of non-layered 2D manganese chalcogenides 被引量:1
5
作者 Jingwei Wang Junyang Tan +9 位作者 Liqiong He Zhenqing Li Shengnan Li Yunhao Zhang Huiyu Nong Qinke Wu Qiangmin Yu Xiaolong Zou Hui-Ming Cheng Bilu Liu 《Advanced Powder Materials》 2024年第2期1-8,共8页
Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from we... Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from wet-chemistry methods but suffer from small size,low quality,and multi-facets,which is a major challenge hindering their facet-dependent property studies and applications.Here,we report the facet-engineered growth(FEG)of non-layered 2D manganese chalcogenides(MnX,X=S,Se,Te)based on the chemical vapor deposition method.The as-grown samples exhibit large-area surfaces of single facet,high-crystallinity,and ordered domain orientation.As a proof-of-concept,we show the facet-dependent electrocatalytic property of non-layered 2D MnSe,proving they are ideal candidates for fundamental research.Furthermore,we elucidate the underlying mechanism of FEG during the vapor growth process by the interfacial energy derived nucleation models.The method developed in this work provides new opportunities for regulating and designing the structure of 2D materials. 展开更多
关键词 Non-layered two-dimensional materials Transition metal chalcogenides Chemical vapor deposition High temperature epitaxial growth Facet engineering
在线阅读 下载PDF
Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu_(2)TlX_(2)(X = Se, Te) 被引量:1
6
作者 Na Qin Xian Du +13 位作者 Yangyang Lv Lu Kang Zhongxu Yin Jingsong Zhou Xu Gu Qinqin Zhang Runzhe Xu Wenxuan Zhao Yidian Li Shuhua Yao Yanfeng Chen Zhongkai Liu Lexian Yang Yulin Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期122-127,共6页
Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electr... Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu_(2)TlX_(2)(X = Se, Te), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu_(2)TlSe_(2) to a semimetal in Cu_(2)TlTe_(2), suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin–orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin–orbit coupling. 展开更多
关键词 transition metal chalcogenides spin–orbit coupling electronic structure angle-resolved photoemission spectroscopy(ARPES)
原文传递
Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires
7
作者 Ming-Shuai Qiu Huai-Hong Guo +3 位作者 Ye Zhang Bao-Juan Dong Sajjad Ali Teng Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期204-209,共6页
Transition-metal chalcogenide nanowires(TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra(M = t... Transition-metal chalcogenide nanowires(TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra(M = transition metal),depending on the way of connection between M6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M6X6 and M6X9(X = chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases(the cap, edge, and C&E phases) of Mo5S4, one of which(the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS2, and the C&E phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo5S4 is further substantiated by crystal orbital overlapping population(COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo5S4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable C&E phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the C&E Mo5S4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications. 展开更多
关键词 TRANSITION-metal chalcogenidE NANOWIRE
原文传递
A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations 被引量:3
8
作者 Danye Liu Linlin Xu +1 位作者 Jianping Xie Jun Yang 《Nano Materials Science》 CAS 2019年第3期184-197,共14页
Intense efforts have been devoted to the synthesis of heterogeneous nanocomposites consisting of chalcogenide semiconductors and noble metals,which usually exhibit enhanced properties owing to the synergistic effect b... Intense efforts have been devoted to the synthesis of heterogeneous nanocomposites consisting of chalcogenide semiconductors and noble metals,which usually exhibit enhanced properties owing to the synergistic effect between their different material domains.Tailoring the structure of the metal domains in the nanocomposites may lead to further improvements of its performance for a given application.This review therefore highlights the strategies based on a structural conversion process for the fabrication of nanocomposites consisting of chalcogenide semiconductors and noble metals with various internal structures,e.g.,hollow or cage-bell.This strategy relies on a unique inside-out diffusion phenomenon of Ag in core-shell nanoparticles with Ag residing at core or inner shell region.In the presence of sulfur or selenium precursors,the diffused Ag are converted into Ag2S or Ag2Se,which is connected with the remaining noble metal parts,forming nanocomposites consisting of silver chalcogenide and noble metal nanoparticles with hollow or cage-bell structures.We would focus on the introduction of the fundamentals,principles,electrocatalytic applications as well as perspectives of the chalcogenide semiconductor-noble metal nanocomposites derived from their core-shell precursors so as to provide the readers insights in designing efficient nanocomposites for electrocatalysis. 展开更多
关键词 NANOCOMPOSITE chalcogenidE NOBLE metal NANOPARTICLE Structural conversion ELECTROCATALYSIS
在线阅读 下载PDF
Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage 被引量:10
9
作者 Junming Cao Junzhi Li +5 位作者 Dongdong Li Zeyu Yuan Yuming Zhang Valerii Shulga Ziqi Sun Wei Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期153-172,共20页
Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglome... Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglomeration,low capacity,and unsatisfied durability,particularly for larger sodium/potassium ions,compromising their practical values.In this work,a novel ternary heterostructure self-assembled from transition metal selenides(MSe,M=Cu,Ni,and Co),MXene nanosheets and N-rich carbonaceous nanoribbons(CNRibs)with ultrafast ion transport properties is designed for sluggish sodium-ion(SIB)and potassium-ion(PIB)batteries.Benefiting from the diverse chemical characteristics,the positively charged MSe anchored onto the electronegative hydroxy(-OH)functionalized MXene surfaces through electrostatic adsorption,while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds.This unique MXene-based heterostructure prevents the restacking of 2D materials,increases the intrinsic conductivity,and most importantly,provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites,and thus,boosts the high-rate storage performances in SIB and PIB applications.Both the quantitatively kinetic analysis and the density functional theory(DFT)calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes,which delivered much enhanced Na+(536.3 mAh g^(−1)@0.1 A g^(−1))and K^(+)(305.6 mAh g^(−1)@1.0 A g^(−1))storage capabilities and excel-lent long-term cycling stability.Therefore,this work provides new insights into 2D materials engineering and low-cost,but kinetically sluggish post-Li batteries. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene HETEROSTRUCTURE Transition metal chalcogenide Sodium and potassium-ions batteries DFT calculation
在线阅读 下载PDF
Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction 被引量:2
10
作者 Yong Wang Yang Zhao +1 位作者 Xiang Ding Liang Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期451-479,共29页
Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transi... Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transition metal dichalcogenides(TMDs)have been demonstrated to be good electrode materials due to their interesting physical and chemical properties.Apart from TMDs,post-transition metal chalcogenides(PTMCs)recently have emerged as a family of important semiconducting materials for electrochemical studies.PTMCs are layered materials which are composed of post-transition metals raging from main group IIIA to group VA(Ga,In,Ge,Sn,Sb and Bi)and group VI chalcogen atoms(S,selenium(Se)and tellurium(Te)).Although a large number of literatures have reviewed the electrochemical and electrocatalytic applications of TMDs,less attention has been focused on PTMCs.In this review,we focus our attention on PTMCs with the aim to provide a summary to describe their fundamental electrochemical properties and electrocatalytic activity towards hydrogen evolution reaction(HER).The characteristic chemical compositions and crystal structures of PTMCs are firstly discussed,which are different from TMDs.Then,inherent electrochemistry of PTMCs is discussed to unveil the well-defined redox behaviors of PTMCs,which could potentially affect their efficiency when applied as electrode materials.Following,we focus our attention on electrocatalytic activity of PTMCs towards HER including novel synthetic strategies developed for the optimization of their HER activity.This review ends with the perspectives for the future research direction in the field of PTMC based electrocatalysts. 展开更多
关键词 Post-transition metal chalcogenide Layered material Chemical composition Crystal structure Inherent electrochemistry Hydrogen evolution
在线阅读 下载PDF
Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting 被引量:1
11
作者 Marwa Mohamed Abouelela Go Kawamura Atsunori Matsuda 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期189-213,I0005,共26页
Photoelectrochemical water splitting(PEC-WS)is a promising technique for transforming solar energy into storable and environmentally friendly chemical energy.Designing semiconductor photoelectrodes with high light abs... Photoelectrochemical water splitting(PEC-WS)is a promising technique for transforming solar energy into storable and environmentally friendly chemical energy.Designing semiconductor photoelectrodes with high light absorption capability,rapid e-/h+separation and transfer,and sufficient chemical stability is vital for developing an efficient PEC-WS system.Metal chalcogenides(MCs)have emerged as promising candidates for light absorbers because of their unique electrical and optical characteristics.In this review,we present recent developments in hydrogen generation via PEC-WS using MC-based photoelectrodes.First,we present a simple illustration of PEC-WS fundamentals.Second,the current performance of various metal(mono-,di-,and tri-)chalcogenide/semiconductor photoelectrodes in PEC-WS is summarized.Then,the charge transfer mechanism at the MC/semiconductor interface and the PEC-WS mechanism is thoroughly explained.Finally,we discuss future research perspectives toward developing efficient and stable MC/semiconductor photoelectrodes. 展开更多
关键词 Photoelectrochemical water splitting metal chalcogenides PHOTOELECTRODE Energy conversion
在线阅读 下载PDF
Metal chalcogenides as ion-exchange materials for the efficient removal of key radionuclides:A review
12
作者 Junhao Tang Meiling Feng Xiaoying Huang 《Fundamental Research》 2025年第5期1969-1987,共19页
The large amount of radioactive waste generated by the rapid development of nuclear energy is in urgent need of disposal.Metal chalcogenide ion-exchangers(MCIEs)are newly developed in recent years that show great pote... The large amount of radioactive waste generated by the rapid development of nuclear energy is in urgent need of disposal.Metal chalcogenide ion-exchangers(MCIEs)are newly developed in recent years that show great potential in the field of removing radionuclides.This is a comprehensive review of the latest research progress on the removal of key radioactive ions(e.g.,radioactive Cs^(+),Sr^(2)+,UO_(2)^(2+),lanthanide ions,and actinide ions)by MCIEs.The structure and ion-exchange properties of MCIEs are summarized emphatically.The ion-exchange mechanism of MCIEs is discussed and the structure-function relationship is preliminarily revealed.Easily exchangeable cations in the interlayer/channel,appropriately sized interlayer/channel/window spaces,flexible open framework,and the strong affinity of the Lewis soft base S^(2−)/Se^(2−)sites in the framework for soft or relatively soft metal ions,are the keys to the excellent selectivity and fast adsorption kinetics of MCIEs for radioactive ions.Finally,future research directions of metal chalcogenides for radioactive ions removal are foreseen.It is hoped that the review will provide a reference for the design of new metal chalcogenide ion-exchangers with practical application prospects for radioactive waste treatment and point to new directions for environmental radioactive contamination control. 展开更多
关键词 metal chalcogenide ION-EXCHANGER Radioactive ions Crystalline material Radioactive contamination control
原文传递
Two-dimensional transition metal chalcogenide nanomaterials for cancer diagnosis and treatment
13
作者 Jingjing Wu Tingting Hu +2 位作者 Guoping Zhao Anran Li Ruizheng Liang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第10期4437-4448,共12页
For more than a decade,the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional(2D)materials,among which 2D transition metal chalcogenides(TMCs)nanomaterial... For more than a decade,the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional(2D)materials,among which 2D transition metal chalcogenides(TMCs)nanomaterials have attracted much attention in a wide range of applications including photoelectric devices,lithium-ion batteries,catalysis,and energy conversion and storage owing to their unique photoelectric physical properties.With such large specific surface area,strong near-infrared(NIR)absorption and abundant chemical element composition,2D TMCs nanomaterials have become good candidates in biomedical imaging and cancer treatment.This review systematically summarizes recent progress on 2D TMCs nanomaterials,which includes their synthesis methods and applications in cancer treatment.At the end of this review,we also highlight the future prospects and challenges of 2D TMCs nanomaterials.It is expected that this work can provide the readers with a detailed overview of the synthesis of 2D TMCs and inspire more novel functional biomaterials based on 2D TMCs for cancer treatment in the future. 展开更多
关键词 Two-dimensional(2D)nanomaterials Transition metal chalcogenides(TMCs) Synthesis method Biomedical imaging Cancer treatment
原文传递
Fe_(0.5)Mn_(0.5)Nb_(3)S_(6)单晶的交换偏置效应和电输运性质
14
作者 苏媛 蔡方齐 +3 位作者 孙梦佳 孙浩东 康保娟 敬超 《上海大学学报(自然科学版)》 北大核心 2025年第2期338-347,共10页
3d族过渡金属插层二硫族化合物因其可调的丰富磁学性质和电学输运性质而备受关注.为了探究Fe掺杂MnNb_(3)S_(6)对其磁性和电输运性质的影响,采用化学气相输运(chemical vapor transport,CVT)方法,将Fe和Mn元素等比例地插入NbS_(2)层间,... 3d族过渡金属插层二硫族化合物因其可调的丰富磁学性质和电学输运性质而备受关注.为了探究Fe掺杂MnNb_(3)S_(6)对其磁性和电输运性质的影响,采用化学气相输运(chemical vapor transport,CVT)方法,将Fe和Mn元素等比例地插入NbS_(2)层间,制备出Fe_(0.5)Mn_(0.5)Nb_(3)S_(6)单晶,并对其结构、磁性以及电输运性质进行表征.研究结果表明,样品与MnNb_(3)S_(6)相比,磁各向异性表现出易磁化轴由面内(ab-plane)向面外(c-axis)倾斜;在居里温度TC以下可以观察到沿面外的交换偏置行为,这一物理现象可归因于Fe掺杂引入的无序相.此外,电输运性质的研究结果表明,当温度低于TC时,样品存在负磁电阻和反常霍尔效应.进一步的分析表明,这些现象与非平庸的拓扑磁结构密切相关. 展开更多
关键词 过渡金属硫族化合物 交换偏置 负磁电阻 反常霍尔效应 电输运
在线阅读 下载PDF
Phonon-mediated superconductivity in orthorhombic XS(X=Nb,Ta or W)
15
作者 Guo-Hua Liu Kai-Yue Jiang +5 位作者 Yi Wan Shu-Xiang Qiao Jin-Han Tan Na Jiao Ping Zhang Hong-Yan Lu 《Chinese Physics B》 2025年第2期419-423,共5页
The unique three-dimensional orthorhombic NbS(o-NbS)compound synthesized in 1969 has recently been experimentally confirmed to be a superconductor[Phys.Rev.B 108174517(2023)].However,there is currently no theoretical ... The unique three-dimensional orthorhombic NbS(o-NbS)compound synthesized in 1969 has recently been experimentally confirmed to be a superconductor[Phys.Rev.B 108174517(2023)].However,there is currently no theoretical research on its superconducting mechanism.In this work,we investigate the superconducting properties of o-Nb S from first-principles calculations.Based on the Eliashberg equation,it is found that the superconductivity mainly originates from the coupling between the electrons of Nb-4d orbitals and the vibrations of Nb atoms in the low-frequency region and those of S atoms in the high-frequency region.A superconducting transition temperature(T_c)of 10.7 K is obtained,which is close to the experimental value and higher than most transition metal chalcogenides(TMCs).The calculated thermodynamic properties in the superconducting state,such as specific heat,energy gap,isotope coefficient,etc.,also indicate that o-NbS is a conventional phonon-mediated superconductor.These results are consistent with recent experimental reports and provide a good understanding of the superconducting mechanism of o-Nb S.Furthermore,the TMCs of o-TaS and o-WS are also investigated;these belong to the same and neighboring groups of Nb,and we find that o-TaS and o-WS are also phonon-mediated superconductors with T_c of 8.9 K and 7.2 K,respectively. 展开更多
关键词 first-principles calculations phonon-mediated superconductivity orthorhombic transition metal chalcogenides
原文传递
In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuO:An experimental and theoretical study of hybrid electrode paradigm for advanced supercapacitors
16
作者 Muhammad Ahmad Tehseen Nawaz +7 位作者 Iftikhar Hussain Xi Chen Shahid Ali Khan Yassine Eddahani B.Moses Abraham Shafqat Ali Ci Wang Kaili Zhang 《Nano Materials Science》 2025年第4期555-563,共9页
The evolution of energy storage technology has seen remarkable progress,with a shift from pure metals to sophisticated,tailor-made active materials.The synthesis of nanostructures with exceptional properties is crucia... The evolution of energy storage technology has seen remarkable progress,with a shift from pure metals to sophisticated,tailor-made active materials.The synthesis of nanostructures with exceptional properties is crucial in the advancement of electrode materials.In this regard,our study highlights the fabrication of a novel,oriented heterostructure comprised of Zn-Mn-Co-telluride grown on a pre-oxidized copper mesh using a hydrothermal method followed by a solvothermal process.This innovative approach leads to the formation of the Zn-Mn-Cotelluride@CuO@Cu heterostructure,which demonstrates the unique oriented morphology.It outperforms both Zn-Mn-Co-telluride@Cu and CuO@Cu by exhibiting lower electrical resistivity,increased redox activity,higher specific capacity,and improved ion diffusion characteristics.The conductivity enhancements of the heterostructure are corroborated by density functional theory(DFT)calculations.When utilized in a hybrid supercapacitor(HSC)alongside activated carbon(AC)electrodes,the Zn-Mn-Co-telluride@CuO@Cu heterostructurebased HSC achieves an energy density of 75.7 Wh kg^(-1).Such findings underscore the potential of these novel electrode materials to significantly impact the design of next-generation supercapacitor devices. 展开更多
关键词 metal chalcogenides Oriented telluride Supercapacitor:energy storage devices Electrodes
在线阅读 下载PDF
金属硫族化物半导体量子点的可控合成及其在光电领域的应用
17
作者 杨丹 崔忠杰 《光源与照明》 2025年第6期45-50,共6页
金属硫族化物半导体量子点具有荧光量子产率高、激发光谱宽、发射波长易调谐、斯托克斯位移大等优势,近年来被广泛研究并应用于照明显示、光电探测、太阳能电池、光通信等多个领域。文章对量子点的性质、发光原理和发光优势,以及金属硫... 金属硫族化物半导体量子点具有荧光量子产率高、激发光谱宽、发射波长易调谐、斯托克斯位移大等优势,近年来被广泛研究并应用于照明显示、光电探测、太阳能电池、光通信等多个领域。文章对量子点的性质、发光原理和发光优势,以及金属硫族化物半导体的分类进行了阐述,深入探究了金属硫族化物量子点的合成策略,并分析了金属硫族化物量子点在发光二极管、太阳能电池、红外光电探测等器件中的应用,以期为下一代光电技术的绿色化与高效化协同发展提供参考。 展开更多
关键词 金属硫族化物 半导体量子点 光电技术
在线阅读 下载PDF
掺银硫系玻璃光电探测器响应波长特性研究
18
作者 吕松竹 赵建行 +3 位作者 周姚 曹英浩 宋瑛林 周见红 《发光学报》 EI CAS CSCD 北大核心 2024年第2期343-350,共8页
由于硫系玻璃具有良好的光学性质,在非线性光学等方面研究广泛,但基于硫系玻璃光电探测器的相关研究却很少。本文利用真空共热蒸发技术制备了不同掺银比例的硫系玻璃薄膜作为半导体膜层结构,并设计构建了金属-绝缘体-半导体结构的自供... 由于硫系玻璃具有良好的光学性质,在非线性光学等方面研究广泛,但基于硫系玻璃光电探测器的相关研究却很少。本文利用真空共热蒸发技术制备了不同掺银比例的硫系玻璃薄膜作为半导体膜层结构,并设计构建了金属-绝缘体-半导体结构的自供电光电探测器,探究了该光电探测器的响应光谱范围。结果表明,该探测器对可见光到近红外区域的光均有响应。针对掺银硫系玻璃光电探测器在635 nm波长激光下,研究了探测器响应电压与激发功率之间的关系。当激光功率小于10 mW时,探测器响应电压与激发功率线性相关;当激光功率大于10 mW时,探测器响应电压逐渐饱和。探测器的上升和衰减时间分别为3.932 s和1.522 s。本研究为硫系玻璃材料在自供电光电探测器领域的应用提供了证明。 展开更多
关键词 硫系玻璃 光电探测器 金属-绝缘体-半导体
在线阅读 下载PDF
Li-O_(2)电池过渡金属硫族化合物催化剂最新研究进展 被引量:2
19
作者 李业冰 赵兰玲 +4 位作者 王俊 张一鸣 窦一川 李瑞丰 刘峣 《铜业工程》 CAS 2024年第1期129-147,共19页
环境污染和能源枯竭等问题对开发新的储能和转换装置提出了更高的需求。具有超高能量密度的Li-O_(2)电池有望成为替代传统化石能源极具潜力的候选。但Li-O_(2)电池滞后的反应动力学带来的实际能量密度低、稳定性不佳及倍率性能差等问题... 环境污染和能源枯竭等问题对开发新的储能和转换装置提出了更高的需求。具有超高能量密度的Li-O_(2)电池有望成为替代传统化石能源极具潜力的候选。但Li-O_(2)电池滞后的反应动力学带来的实际能量密度低、稳定性不佳及倍率性能差等问题制约了其应用,因此迫切需要开发高效电催化剂来提高其滞后的反应动力学。过渡金属硫族化合物由于其类石墨烯结构特点以及本身优异的催化活性吸引了研究人员的广泛研究。本文介绍了过渡金属硫族化合物材料在非水系Li-O_(2)电池催化剂方面的最新研究进展,包括过渡金属硫化物、硒化物、碲化物以及双过渡金属硫族化合物催化剂对Li-O_(2)电池催化性能提高的影响,阐述了对过渡金属硫族化合物材料进行结构设计构建、相调控以及表面改性的方法,建立了其微观结构与氧还原和氧析出催化活性的联系,最后对过渡金属硫族化合物材料在Li-O_(2)电池中的进一步应用进行了展望。 展开更多
关键词 Li-O_(2)电池 电催化 正极催化剂 过渡金属硫族化合物 微观结构调控
在线阅读 下载PDF
Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides 被引量:9
20
作者 夏从新 李京波 《Journal of Semiconductors》 EI CAS CSCD 2016年第5期1-9,共9页
Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus o... Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalco- genides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some per- sonal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications. 展开更多
关键词 2D metal chalcogenides SEMICONDUCTOR optoelectronic applications
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部