Semitransparent organic photovoltaics(ST-OPVs)for building integration represent a pivotal direction in the development of photovoltaic industry.Solution-processed silver nanowires(AgNWs)are considered promising candi...Semitransparent organic photovoltaics(ST-OPVs)for building integration represent a pivotal direction in the development of photovoltaic industry.Solution-processed silver nanowires(AgNWs)are considered promising candidates for transparent electrodes in semitransparent devices due to their high transparency-conductivity-efficiency merit,large-scale processability,and low cost.In this work,we develop two solution-processed organic–inorganic hybrid electrodes,named AgNWs-PD and AgNWsPC,utilizing AgNWs as the conductive framework and aliphatic amine-functionalized perylene-diimide(PDINN)as the sandwiched material,while AgNWs-PC exhibits significantly improved electrical conductivity and enhanced contact area with the underlying electron transport layer.The optimized device achieves a power conversion efficiency of 9.45%with an open circuit voltage of 0.846 V,a high filling factor of 75.4%,and an average visible transmittance(AVT)of 44.0%,delivering an outstanding light utilization efficiency(LUE)of 4.16%,which is the highest reported value for all solution-processed ST-OPVs.In addition,by coupling a 30-nm tellurium dioxide atop AgNWs-PC,the bifaciality factor of derivative devices improves from 73.7%to 99.4%,while maintaining a high bifacial LUE over 3.7%.Our results emphasize the superiority and effectiveness of PDINN-sandwiched AgNWs electrodes for highperformance and all solution-processed ST-OPVs.展开更多
A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL compo...A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.展开更多
A solution-processed CuOx film has been successfully integrated as the hole-transporting layer(HTL) for inverted planar heterojunction perovskite solar cells(PVSCs). The CuOx layer is fabricated by simply spin-coa...A solution-processed CuOx film has been successfully integrated as the hole-transporting layer(HTL) for inverted planar heterojunction perovskite solar cells(PVSCs). The CuOx layer is fabricated by simply spin-coating a copper acetylacetonate(Cu(acac)2) chloroform solution onto ITO glass with high transparency in the visible range. The compact and pinhole-free perovskite film with large grain domains is grown on the CuOx film. The inverted PVSCs with the structure of ITO/CuOx/MAPbI3/PC(61)BM/ZnO/Al are fabricated and show a best PCE of 17.43% under standard AM 1.5G simulated solar irradiation with a VOCof 1.03 V, aJ(SC) of 22.42 mA cm^(-2), and a fill factor of 0.76, which is significantly higher and more stable than that fabricated from the often used hole-transporting material PEDOT:PSS(11.98%) under the same experimental conditions. The enhanced performance is attributed to the efficient hole extraction through the CuOx layer as well as the high-quality CH3NH3PbI3 films grown on the CuOx. Our results indicate that low-cost and solution-processed CuOx film is a promising HTL for high performance PVSCs with better stability.展开更多
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia...Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.展开更多
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,b...Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.展开更多
With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emittin...With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.展开更多
Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)P...Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)Pt(acac) were prepared and characterized,in which(2-(4',6'-difluorophenyl)pyridinato-N,C2')(2,4-pentanedionato-0,0)Pt(Ⅱ) was used as the planar emission core and 9-(4-(phenylsulfonyl)phenyl)-9 H-carbazole(DC) was regard as the bent pendent.Both platinum complexes showed bright emission in solution and solid state,concomitant with charming external-stimuli-responsive emission under mechanical grinding,organic solvent vapors and pressure.The change emission color spanned from yellow to near-infrared region.Using the platinum complexes as the dopant,solution processable organic light-emitting diodes(OLEDs) were fabricated and a maximum external quantum efficiency of ~18% was achieved,which is the highest value among the reported solution-processable OLEDs based on externalstimuli-responsive luminescence.This research demonstrated that platinum complex can show promising stimuli responsive emission via ingenious molecular design,indicating a novel way for developing the smart materials in semiconductor filed.展开更多
Artificial sensory systems have emerged as pivotal technologies to bridge the gap between the virtual and real-world,replicating human senses to interact intelligently with external stimuli.To practically apply artifi...Artificial sensory systems have emerged as pivotal technologies to bridge the gap between the virtual and real-world,replicating human senses to interact intelligently with external stimuli.To practically apply artificial sensory systems in the real-world,it is essential to mass-produce nanomaterials with ensured sensitivity and selectivity,purify them for desired functions,and integrate them into large-area sensory devices through assembly techniques.A comprehensive understanding of each process parameter from material processing to device assembly is crucial for achieving a high-performing artificial sensory system.This review provides a technological framework for fabricating high-performance artificial sensory systems,covering material processing to device integrations.We introduce recent approaches for dispersing and purifying various nanomaterials including 0D,1D,and 2D nanomaterials.We then highlight advanced coating and printing techniques of the solution-processed nanomaterials based on representative three methods including(i)evaporation-based assembly,(ii)assisted assembly,and(iii)direct patterning.We explore the application and performances of these solution-processed materials and printing methods in fabricating sensory devices mimicking five human senses including vision,olfaction,gustation,hearing,and tactile perception.Finally,we suggest an outlook for possible future research directions to solve the remaining challenges of the artificial sensory systems such as ambient stability,device consistency,and integration with AI-based software.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state ligh...Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs.展开更多
Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite sign...Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs.展开更多
Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a ne...Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a new solutionprocessed method to prepare a flexible film of a Bi_(2)Te_(3)/single-walled carbon nanotube(SWCNT)hybrid,where the dissolved Bi_(2)Te_(3) ion precursors are mixed with dispersed SWCNTs in solution and recrystallized on the SWCNT surfaces to form a“cement-rebar”-like architecture.The hybrid film shows an n-type characteristic,with a stable Seebeck coefficient of^(−1)00.00±1.69μVK^(−1) in air.Furthermore,an extremely low in-plane thermal conductivity of∼0.33Wm^(−1) K^(−1) is achieved at 300 K,and the figure of merit(ZT)reaches 0.47±0.02.In addition,the TE performance is independent of mechanical bending.The unique“cement-rebar”-like architecture is believed to be responsible for the excellent TE performances and the high flexibility.The results provide a new avenue for the fabrication of solution-processable and flexible TE hybrid films and will speed up the applications of flexible electronics and energy conversion.展开更多
Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performanc...Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performance polymer transistor is achieved, with the saturated electron mobility of about 0.46cm2/Vs, threshold voltage nearly 0 V and subthreshold sway of about 0.9 V/decade, employing a polystyrene (PS) dielectric layer. The transistor performances are further improved with increasing current and lower operation voltages by utilizing a bi-layer gate dielectric, comprising a thin PS dielectric layer adjacent to the semiconductor to minimize the density of the interface traps for obtaining a small VT, a large μ and a poly(methyl methacrylate) (PMMA) dielectric layer with a relatively high-k adjacent to the gate electrode for enlarging the capacitance, processed from the orthogonal solvents.展开更多
The development of cost-effective,environmentally sustainable narrowband near-infrared(NIR)organic light-emitting diodes(OLEDs)remains challenging due to low intrinsic quantum yields of NIR emitters,as constrained by ...The development of cost-effective,environmentally sustainable narrowband near-infrared(NIR)organic light-emitting diodes(OLEDs)remains challenging due to low intrinsic quantum yields of NIR emitters,as constrained by the energy gap law and inefficient triplet exciton utilization.In this study,we present a conformation-locking strategy combined with donor engineering to enhance NIR emitters based on a boron-dipyrromethene(BODIPY)scaffold for high-performance solution-processed OLEDs.Two NIR emitters,Ph-BDP-Cz and Ph-BDP-PY,were synthesized by introducing a donor at the α-position of the BODIPY core via a vinyl bridge.This design increases molecular rigidity by promoting HF interactions between vinyl hydrogens and the BF2 group,suppressing twisting and scissoring motions,which results in narrow emission and high photoluminescence quantum yields.Donor engineering also enables fine-tuning of emission wavelengths without broadening the full-width at half-maximum(FWHM),maintaining a narrow emission profile.Using these BODIPY emitters in thermally activated delayed fluorescence(TADF)-sensitized hyperfluorescent OLEDs,we achieved a maximum external quantum efficiency(EQE)of 6.9%with an emission peak at 702 nm and a narrow FWHM of<45 nm.To our knowledge,this represents one of the highest efficiencies among TADF sensitized solution-processed NIR OLEDs,offering a promising path toward the development of sustainable and high-performance NIR optoelectronic devices.展开更多
Solution-processed organic field-effect transistors(OFETs)are of great interest in both academia and industry because of the potential to reduce the production cost.However,the performance of these devices can be adve...Solution-processed organic field-effect transistors(OFETs)are of great interest in both academia and industry because of the potential to reduce the production cost.However,the performance of these devices can be adversely affected by the interfacial incompatibility between solution-deposited electrodes and organic semiconductors in comparison with conventional methods.To address this critical challenge,we developed all-solution processed OFETs with low contact resistance by utilizing a multifunctional buffer layer inserted on different commercial p-type semiconductors.The buffer layer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is designed to effectively reduce the large Schottky barriers at the Ag/semiconductor interfaces.PEDOT:PSS also offers the function of proper affinity with Ag,resulting in the formation of hybrid PEDOT:PSS/Ag electrode patterns.High-performance poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-5,5′-di(thiophen-2-yl)-2,2′-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene](PDVT-10)OFET including low contact resistance of 789Ωcm,high average mobility of 10.5 cm^(2)V^(−1)s^(−1),exceptional operational and bending stability,and a substantial enhancement in performance were realized compared to conventional methods.A pseudo-complementary inverter based on the fully solution-based and buffer layer approach was further developed,showing a voltage gain>260.Our approach can potentially overcome the device performance limitation and advance the development of low-cost,large-scale,flexible all-solution-processed OFETs.展开更多
X-ray-responsive materials are often expensive and limited because of the monopolistic and complex hightemperature crystallisation technology required.Solution-processed material innovation offers a low-cost and vast ...X-ray-responsive materials are often expensive and limited because of the monopolistic and complex hightemperature crystallisation technology required.Solution-processed material innovation offers a low-cost and vast design space for a new generation of X-ray detectors aimed at for high X-ray imaging performance.展开更多
Cross-linkable hole transport materials(x-HTMs)play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes(OLEDs).However,issues such as energy level mismatch and ...Cross-linkable hole transport materials(x-HTMs)play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes(OLEDs).However,issues such as energy level mismatch and low hole mobility hinder the application of x-HTMs in deep-blue OLEDs.In particular,thermally activated delayed fluorescent(TADF)emitters require HTMs with high triplet energies(E T)to ensure high exciton utilization efficiency.Here,two star-shaped cross-linkable HTMs 5-(9H-carbazol-9-yl)-N^(1),N^(3)-di(p-tolyl)-N^(1),N^(3)-bis(4-vinylphenyl)benzene-1,3-diamine(m-V-CzDPA)and N^(1),N^(1)-diphenyl-N^(3),N^(5)-di(p-tolyl)-N^(3),N^(5)-bis(4-vinylphenyl)benzene-1,3,5-triamine(m-V-DPADPA)were designed and synthesized.Owing to their aromatic torsion structures,m-V-CzDPA and m-V-DPADPA possessed high E Ts of 2.89 and 2.87 eV,respectively,which can effectively confine triplet excitons in the emitting layer(EML).The carrier diffusion coefficients of their x-HTMs,x-m-CzDPA and x-m-DPADPA,which were obtained via carrier diffusion imaging characterization were 0.54 and 0.44 cm^(2) s^(-1),respectively,thus indicating outstanding intrinsic hole transport capacity,with hole mobilities of 4.30×10^(-4) and 1.39×10^(-4) cm^(2) V^(-1) s^(-1),respectively.Solution-processed deep-blue TADF-OLEDs employing x-m-CzDPA as the HTM achieved a maximum current efficiency/maximum external quantum efficiency of 5.25 cd A^(-1)/18.06%,with CIE coordinates of(0.162,0.042).This is the first time that x-HTMs have served as efficient deep-blue TADF-OLEDs via a solution process,which also meets the latest BT.2020 standard(CIE_(y)≤0.046).展开更多
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici...All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented.展开更多
The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Her...The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications.展开更多
Two-dimensional(2 D)covalent organic frameworks(COFs)with periodic functionalπ-electron systems are an emerging class of optoelectronic materials.However,almost all conjugated COFs so far are insoluble and hard to pr...Two-dimensional(2 D)covalent organic frameworks(COFs)with periodic functionalπ-electron systems are an emerging class of optoelectronic materials.However,almost all conjugated COFs so far are insoluble and hard to process,which hampers severely their optoelectronic applications.Here,a solution-processable,nanoscale and sp2 carbon-conjugated COF-like material,PDPP-C20 was successfully designed and synthesized.The solution-processed PDPP-C20 films exhibit high crystallinity and excellent charge transport properties along out-of-plane directions,combined with the highest occupied molecular orbital(HOMO)/lowest unoccupied molecular orbital(LUMO)levels of-5.36/-3.75 e V,making PDPP-C20 suitable for electronic device applications.An efficiency as high as 21.92%has been demonstrated when it was used as a functional interfacial layer in perovskite solar cells,coupled with dramatically improved stability in comparison with the control device due to the superior hydrophobicity of PDPP-C20 layer as well as its passivation effect on perovskite surface.Furthermore,the soluble PDPP-C20 could also be used as donor in bulk-heterojunction organic solar cells and an initial efficiency of 2.46%has been achieved.These results indicate that this new class of soluble and nanoscale COF-like materials should offer a new arena of functional materials for optoelectronic devices.展开更多
基金financially supported by the National Natural Science Foundation of China(21905137)the Research Grants Council of Hong Kong(15307922,C5037-18G,C4005-22Y)+1 种基金RGC Senior Research Fellowship Scheme(SRFS2223-5S01)the Hong Kong Polytechnic University:Sir Sze-yuen Chung Endowed Professorship Fund(8-8480)。
文摘Semitransparent organic photovoltaics(ST-OPVs)for building integration represent a pivotal direction in the development of photovoltaic industry.Solution-processed silver nanowires(AgNWs)are considered promising candidates for transparent electrodes in semitransparent devices due to their high transparency-conductivity-efficiency merit,large-scale processability,and low cost.In this work,we develop two solution-processed organic–inorganic hybrid electrodes,named AgNWs-PD and AgNWsPC,utilizing AgNWs as the conductive framework and aliphatic amine-functionalized perylene-diimide(PDINN)as the sandwiched material,while AgNWs-PC exhibits significantly improved electrical conductivity and enhanced contact area with the underlying electron transport layer.The optimized device achieves a power conversion efficiency of 9.45%with an open circuit voltage of 0.846 V,a high filling factor of 75.4%,and an average visible transmittance(AVT)of 44.0%,delivering an outstanding light utilization efficiency(LUE)of 4.16%,which is the highest reported value for all solution-processed ST-OPVs.In addition,by coupling a 30-nm tellurium dioxide atop AgNWs-PC,the bifaciality factor of derivative devices improves from 73.7%to 99.4%,while maintaining a high bifacial LUE over 3.7%.Our results emphasize the superiority and effectiveness of PDINN-sandwiched AgNWs electrodes for highperformance and all solution-processed ST-OPVs.
基金supported by the National Natural Science Foundation of China(No.51973020)Beijing Natural Science Foundation(No.2232052)。
文摘A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.
基金supported by the Major State Basic Research Development Program (No. 2014CB643503)the National Science Foundation for Post-doctoral Scientists of China (No. 2015M580512)partly supported by the program for Innovative Research Team in University of Ministry of Education of China (No. IRT13R54)
文摘A solution-processed CuOx film has been successfully integrated as the hole-transporting layer(HTL) for inverted planar heterojunction perovskite solar cells(PVSCs). The CuOx layer is fabricated by simply spin-coating a copper acetylacetonate(Cu(acac)2) chloroform solution onto ITO glass with high transparency in the visible range. The compact and pinhole-free perovskite film with large grain domains is grown on the CuOx film. The inverted PVSCs with the structure of ITO/CuOx/MAPbI3/PC(61)BM/ZnO/Al are fabricated and show a best PCE of 17.43% under standard AM 1.5G simulated solar irradiation with a VOCof 1.03 V, aJ(SC) of 22.42 mA cm^(-2), and a fill factor of 0.76, which is significantly higher and more stable than that fabricated from the often used hole-transporting material PEDOT:PSS(11.98%) under the same experimental conditions. The enhanced performance is attributed to the efficient hole extraction through the CuOx layer as well as the high-quality CH3NH3PbI3 films grown on the CuOx. Our results indicate that low-cost and solution-processed CuOx film is a promising HTL for high performance PVSCs with better stability.
基金Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and distinguished professor designationfunding from the National Natural Science Foundation of China(NSFC)
文摘Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
基金supported by National Natural Science Foundation of China (61861136004)the National Key R&D Program of China (2016YFB0402705)+1 种基金the Innovation Fund of WNLOProgram for HUST Academic Frontier Youth Team (2018QYTD06)
文摘Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.
基金supported by the National Natural Science Foundation of China(Nos.21772095,91833306,51873159,91956107,61875090 and 21674049)1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingshan),the Six Talent Plan(No.2016XCL050)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003)China Postdoctoral Science Foundation(No.2020M671460)Jiangsu Planned Projects for Postdoctoral Research Funds(No.20202137)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.46030CX17761)。
文摘With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.
基金Financial support was from the National Natural Science Foundation of China(Nos.51773021,51911530197,U1663229)Six Talent Peaks Project in Jiangsu Province(No.XCL-102)the Talent Project of Jiangsu Specially-Appointed Professor,Natural Science Fund for Colleges and Universities in Jiangsu Province(No.19KJA430002)。
文摘Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)Pt(acac) were prepared and characterized,in which(2-(4',6'-difluorophenyl)pyridinato-N,C2')(2,4-pentanedionato-0,0)Pt(Ⅱ) was used as the planar emission core and 9-(4-(phenylsulfonyl)phenyl)-9 H-carbazole(DC) was regard as the bent pendent.Both platinum complexes showed bright emission in solution and solid state,concomitant with charming external-stimuli-responsive emission under mechanical grinding,organic solvent vapors and pressure.The change emission color spanned from yellow to near-infrared region.Using the platinum complexes as the dopant,solution processable organic light-emitting diodes(OLEDs) were fabricated and a maximum external quantum efficiency of ~18% was achieved,which is the highest value among the reported solution-processable OLEDs based on externalstimuli-responsive luminescence.This research demonstrated that platinum complex can show promising stimuli responsive emission via ingenious molecular design,indicating a novel way for developing the smart materials in semiconductor filed.
基金supported by the National Research Foundation(NRF)grant funded by the Korean government(MSIT)(No.RS-2023-00237308).
文摘Artificial sensory systems have emerged as pivotal technologies to bridge the gap between the virtual and real-world,replicating human senses to interact intelligently with external stimuli.To practically apply artificial sensory systems in the real-world,it is essential to mass-produce nanomaterials with ensured sensitivity and selectivity,purify them for desired functions,and integrate them into large-area sensory devices through assembly techniques.A comprehensive understanding of each process parameter from material processing to device assembly is crucial for achieving a high-performing artificial sensory system.This review provides a technological framework for fabricating high-performance artificial sensory systems,covering material processing to device integrations.We introduce recent approaches for dispersing and purifying various nanomaterials including 0D,1D,and 2D nanomaterials.We then highlight advanced coating and printing techniques of the solution-processed nanomaterials based on representative three methods including(i)evaporation-based assembly,(ii)assisted assembly,and(iii)direct patterning.We explore the application and performances of these solution-processed materials and printing methods in fabricating sensory devices mimicking five human senses including vision,olfaction,gustation,hearing,and tactile perception.Finally,we suggest an outlook for possible future research directions to solve the remaining challenges of the artificial sensory systems such as ambient stability,device consistency,and integration with AI-based software.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.
基金Project(11904298)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyj-msxm X0586)supported by Chongqing Natural Science Foundation,ChinaProject(S202010635001)supported by Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates,China。
文摘Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs.
基金supported by Guangdong Foundation of Basic and Applied Basic Research(2019B1515120023,2022B1515020041)National Natural Science Foundation of China(21975053,21975055,U2001222)for financial support
文摘Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs.
基金We thank the National Natural Science Foundation of China(No.51973122)for financial support.
文摘Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a new solutionprocessed method to prepare a flexible film of a Bi_(2)Te_(3)/single-walled carbon nanotube(SWCNT)hybrid,where the dissolved Bi_(2)Te_(3) ion precursors are mixed with dispersed SWCNTs in solution and recrystallized on the SWCNT surfaces to form a“cement-rebar”-like architecture.The hybrid film shows an n-type characteristic,with a stable Seebeck coefficient of^(−1)00.00±1.69μVK^(−1) in air.Furthermore,an extremely low in-plane thermal conductivity of∼0.33Wm^(−1) K^(−1) is achieved at 300 K,and the figure of merit(ZT)reaches 0.47±0.02.In addition,the TE performance is independent of mechanical bending.The unique“cement-rebar”-like architecture is believed to be responsible for the excellent TE performances and the high flexibility.The results provide a new avenue for the fabrication of solution-processable and flexible TE hybrid films and will speed up the applications of flexible electronics and energy conversion.
基金Supported by the National Natural Science Foundation of China under Grant No 61177028
文摘Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performance polymer transistor is achieved, with the saturated electron mobility of about 0.46cm2/Vs, threshold voltage nearly 0 V and subthreshold sway of about 0.9 V/decade, employing a polystyrene (PS) dielectric layer. The transistor performances are further improved with increasing current and lower operation voltages by utilizing a bi-layer gate dielectric, comprising a thin PS dielectric layer adjacent to the semiconductor to minimize the density of the interface traps for obtaining a small VT, a large μ and a poly(methyl methacrylate) (PMMA) dielectric layer with a relatively high-k adjacent to the gate electrode for enlarging the capacitance, processed from the orthogonal solvents.
基金financially supported by Natural Science Foundation of Guangdong Province(No.2022B1515020041)National Natural Science Foundation of China(Nos.22350410384,52273179,52303228,U23A20594)+1 种基金Guangzhou Basic and Applied Basic Research(No.2023A04J1374)the Instrumental Analysis Center of Guangdong University of Technology for their support。
文摘The development of cost-effective,environmentally sustainable narrowband near-infrared(NIR)organic light-emitting diodes(OLEDs)remains challenging due to low intrinsic quantum yields of NIR emitters,as constrained by the energy gap law and inefficient triplet exciton utilization.In this study,we present a conformation-locking strategy combined with donor engineering to enhance NIR emitters based on a boron-dipyrromethene(BODIPY)scaffold for high-performance solution-processed OLEDs.Two NIR emitters,Ph-BDP-Cz and Ph-BDP-PY,were synthesized by introducing a donor at the α-position of the BODIPY core via a vinyl bridge.This design increases molecular rigidity by promoting HF interactions between vinyl hydrogens and the BF2 group,suppressing twisting and scissoring motions,which results in narrow emission and high photoluminescence quantum yields.Donor engineering also enables fine-tuning of emission wavelengths without broadening the full-width at half-maximum(FWHM),maintaining a narrow emission profile.Using these BODIPY emitters in thermally activated delayed fluorescence(TADF)-sensitized hyperfluorescent OLEDs,we achieved a maximum external quantum efficiency(EQE)of 6.9%with an emission peak at 702 nm and a narrow FWHM of<45 nm.To our knowledge,this represents one of the highest efficiencies among TADF sensitized solution-processed NIR OLEDs,offering a promising path toward the development of sustainable and high-performance NIR optoelectronic devices.
基金supported by the Ministry of Science and Technology of China through the National Key R&D Plan(2022YFA1205900)the Chinese Academy of Sciences(Hundred Talents Plan,Youth Innovation Promotion Association)+2 种基金the Strategic Priority Research Program of Sciences(XDB0520201)the Young Scientists in Basic Research(YSBR-053)the National Natural Science Foundation of China(T2225028,22475219,U22A6002,and U21A20497).
文摘Solution-processed organic field-effect transistors(OFETs)are of great interest in both academia and industry because of the potential to reduce the production cost.However,the performance of these devices can be adversely affected by the interfacial incompatibility between solution-deposited electrodes and organic semiconductors in comparison with conventional methods.To address this critical challenge,we developed all-solution processed OFETs with low contact resistance by utilizing a multifunctional buffer layer inserted on different commercial p-type semiconductors.The buffer layer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is designed to effectively reduce the large Schottky barriers at the Ag/semiconductor interfaces.PEDOT:PSS also offers the function of proper affinity with Ag,resulting in the formation of hybrid PEDOT:PSS/Ag electrode patterns.High-performance poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-5,5′-di(thiophen-2-yl)-2,2′-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene](PDVT-10)OFET including low contact resistance of 789Ωcm,high average mobility of 10.5 cm^(2)V^(−1)s^(−1),exceptional operational and bending stability,and a substantial enhancement in performance were realized compared to conventional methods.A pseudo-complementary inverter based on the fully solution-based and buffer layer approach was further developed,showing a voltage gain>260.Our approach can potentially overcome the device performance limitation and advance the development of low-cost,large-scale,flexible all-solution-processed OFETs.
文摘X-ray-responsive materials are often expensive and limited because of the monopolistic and complex hightemperature crystallisation technology required.Solution-processed material innovation offers a low-cost and vast design space for a new generation of X-ray detectors aimed at for high X-ray imaging performance.
基金supported by the National Key Research and Development Program of China(2021YFB3602702)the National Natural Science Foundation of China(52173180).
文摘Cross-linkable hole transport materials(x-HTMs)play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes(OLEDs).However,issues such as energy level mismatch and low hole mobility hinder the application of x-HTMs in deep-blue OLEDs.In particular,thermally activated delayed fluorescent(TADF)emitters require HTMs with high triplet energies(E T)to ensure high exciton utilization efficiency.Here,two star-shaped cross-linkable HTMs 5-(9H-carbazol-9-yl)-N^(1),N^(3)-di(p-tolyl)-N^(1),N^(3)-bis(4-vinylphenyl)benzene-1,3-diamine(m-V-CzDPA)and N^(1),N^(1)-diphenyl-N^(3),N^(5)-di(p-tolyl)-N^(3),N^(5)-bis(4-vinylphenyl)benzene-1,3,5-triamine(m-V-DPADPA)were designed and synthesized.Owing to their aromatic torsion structures,m-V-CzDPA and m-V-DPADPA possessed high E Ts of 2.89 and 2.87 eV,respectively,which can effectively confine triplet excitons in the emitting layer(EML).The carrier diffusion coefficients of their x-HTMs,x-m-CzDPA and x-m-DPADPA,which were obtained via carrier diffusion imaging characterization were 0.54 and 0.44 cm^(2) s^(-1),respectively,thus indicating outstanding intrinsic hole transport capacity,with hole mobilities of 4.30×10^(-4) and 1.39×10^(-4) cm^(2) V^(-1) s^(-1),respectively.Solution-processed deep-blue TADF-OLEDs employing x-m-CzDPA as the HTM achieved a maximum current efficiency/maximum external quantum efficiency of 5.25 cd A^(-1)/18.06%,with CIE coordinates of(0.162,0.042).This is the first time that x-HTMs have served as efficient deep-blue TADF-OLEDs via a solution process,which also meets the latest BT.2020 standard(CIE_(y)≤0.046).
基金the National Natural Science Foundation of China(52103221,52172048,22205130,52063010)Shandong Provincial Natural Science Foundation(ZR2021QB179,ZR2021QB024,ZR2021ZD06)+2 种基金Guangdong Natural Science Foundation of China(2023A1515012323,2023A1515010943,2022A1515110643)the National Key Research and Development Program of China(2022YFB4200400)funded by M0STthe Fundamental Research Funds of Shandong University.
文摘All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented.
基金supported by the Natural Science Foundation of SZU (2017003)Shenzhen Science and Technology Research Grant (JCYJ20150324141711684)+2 种基金Singapore National Research Foundation (NRF-RF2009-06)an Investigator-ship Award (NRFNRFI2015-03)Ministry of Education (Singapore) via an AcRF Tier2 Grant (MOE2012-T2-2-086)
文摘The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications.
基金the National Natural Science Foundation of China(51673097,21875122)Ministry of Science and Technology of China(2016YFA0200200,2019YFA0705903)。
文摘Two-dimensional(2 D)covalent organic frameworks(COFs)with periodic functionalπ-electron systems are an emerging class of optoelectronic materials.However,almost all conjugated COFs so far are insoluble and hard to process,which hampers severely their optoelectronic applications.Here,a solution-processable,nanoscale and sp2 carbon-conjugated COF-like material,PDPP-C20 was successfully designed and synthesized.The solution-processed PDPP-C20 films exhibit high crystallinity and excellent charge transport properties along out-of-plane directions,combined with the highest occupied molecular orbital(HOMO)/lowest unoccupied molecular orbital(LUMO)levels of-5.36/-3.75 e V,making PDPP-C20 suitable for electronic device applications.An efficiency as high as 21.92%has been demonstrated when it was used as a functional interfacial layer in perovskite solar cells,coupled with dramatically improved stability in comparison with the control device due to the superior hydrophobicity of PDPP-C20 layer as well as its passivation effect on perovskite surface.Furthermore,the soluble PDPP-C20 could also be used as donor in bulk-heterojunction organic solar cells and an initial efficiency of 2.46%has been achieved.These results indicate that this new class of soluble and nanoscale COF-like materials should offer a new arena of functional materials for optoelectronic devices.