An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral repres...An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral representations, corresponding recurrence relation and asymptotic expressions are also derived. The solution is simplified for some special cases of rπ. For Rr= R0,r= 1/N and Rr≠R0,r = 1/2N, the solution can be reduced to linear superpositions of incident and partially reflected waves, hence a nonlinear solution of forth order for this problem can be obtained by using the author's theory of nonlinear interaction among gravity surface waves. The given solution is related to inhomogeneous Robin boundary conditions, which include the Neumann boundary conditions usually accepted in wave diffraction theory.展开更多
A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtaine...A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced ad- joint matrices of the differential operator matrix, the corresponding fundamental analyt- ical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial func- tions used in numerical methods.展开更多
The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent...The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent density as high as 30 mA/cm^2 were obtained.But the stabilization experiment demonstrates that about 8% of the photocurrent is attributed to a photoanodic corrosion ceaction.展开更多
No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical anal...No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical analysis to study the types of association of main ore-forming elements at different temperatures and pressures and their distribution in the deposit. On that basis combined with the structural analysis of the deposit, the recto-geochemical features of No.6 East tin deposit have been revealed and the direction and channel of migration of the ore solutions in faults and the deposit have been deduced. This research can appropriately elucidate the control of faults on the migration of ore solutions and the sites where ore solutions are dispersed and accumulated, thus providing the theoretical basis for the prediction of hydrothermal deposits in question.展开更多
Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed poly...Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed polysaccharides.This review will first provide a comprehensive overview of general information on seaweed polysaccharides regarding solubility,multilevel structure,viscoelasticity,and gelation.Then we summarize preparation methods of seaweed polysaccharides fibers including wet-spinning technique,electrospinning technique and microfluidic spinning.The applications of seaweed polysaccha-rides fibers,based on many excellent inherent properties,including biocompatibility,suitable microstruc-ture,nontoxicity,potential bioactivity,good intrinsic flame retardancy and thermal stability,are described in detail.展开更多
This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 24...This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 243 and258 K, respectively, for different time. For comparative study, Cr–15Mo and Cr–62Mo powder mixtures were milled at 243 K for 18 h. Solid solution Cr(Mo) with body-centered cubic(bcc) crystal structure and amorphous Cr(Mo) alloy was obtained during MA process caused by high-energy ball milling. Based on the Miedema's model, the free-energy change for forming either a solid solution or an amorphous in Cr–Mo alloy system is positive but small at a temperature range between 200 and 300 K. The thermodynamical barrier for forming alloy in Cr–Mo system can be overcome when MA occurs at 243 K, and the supersaturated solid solution crystal nuclei with bcc structure form continually, and three supersaturated solid solutions of Cr–62Mo, Cr–35Mo and Cr–15Mo formed. Milling the Cr–35Mo powder mixture at 258 K, the solid solution Cr(Mo) forms firstly, and then the solid solution Cr(Mo) transforms into the amorphous Cr(Mo)alloy with a few of nanocrystallines when milling is prolonged. At higher milling temperature, it is favorable for the formation of the amorphous phase, as indicated by the thermodynamical calculation for immiscible Cr–Mo alloy system.展开更多
To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ...To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.展开更多
This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, w...This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:Vt(t, x) + sup u∈U = 0,V(0, x) = Φ0(x).展开更多
文摘An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral representations, corresponding recurrence relation and asymptotic expressions are also derived. The solution is simplified for some special cases of rπ. For Rr= R0,r= 1/N and Rr≠R0,r = 1/2N, the solution can be reduced to linear superpositions of incident and partially reflected waves, hence a nonlinear solution of forth order for this problem can be obtained by using the author's theory of nonlinear interaction among gravity surface waves. The given solution is related to inhomogeneous Robin boundary conditions, which include the Neumann boundary conditions usually accepted in wave diffraction theory.
基金supported by the National Natural Science Foundation of China (Nos. 10872108 and10876100)the Program for New Century Excellent Talents in University (No. NCET-07-0477)the National Basic Research Programs of China (Nos. 2010CB731503 and 2010CB832701)
文摘A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced ad- joint matrices of the differential operator matrix, the corresponding fundamental analyt- ical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial func- tions used in numerical methods.
文摘The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent density as high as 30 mA/cm^2 were obtained.But the stabilization experiment demonstrates that about 8% of the photocurrent is attributed to a photoanodic corrosion ceaction.
文摘No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical analysis to study the types of association of main ore-forming elements at different temperatures and pressures and their distribution in the deposit. On that basis combined with the structural analysis of the deposit, the recto-geochemical features of No.6 East tin deposit have been revealed and the direction and channel of migration of the ore solutions in faults and the deposit have been deduced. This research can appropriately elucidate the control of faults on the migration of ore solutions and the sites where ore solutions are dispersed and accumulated, thus providing the theoretical basis for the prediction of hydrothermal deposits in question.
基金supported by the National Natu-ral Science Foundation of China(Nos.52003132,51403113 and 52072193)and the Shandong Provincial Natural Science Foundation(Nos.ZR2021JQ16,ZR2019YQ19 and ZR2019BEM018)the Project of Shandong Province Higher Educational Science and Technology Program(No.2019KJA026)the Shandong Provincial College Stu-dents'Innovative Entrepreneurial Training(No.S202111065214).
文摘Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed polysaccharides.This review will first provide a comprehensive overview of general information on seaweed polysaccharides regarding solubility,multilevel structure,viscoelasticity,and gelation.Then we summarize preparation methods of seaweed polysaccharides fibers including wet-spinning technique,electrospinning technique and microfluidic spinning.The applications of seaweed polysaccha-rides fibers,based on many excellent inherent properties,including biocompatibility,suitable microstruc-ture,nontoxicity,potential bioactivity,good intrinsic flame retardancy and thermal stability,are described in detail.
基金National Natural Science Foundation of China (Nos. 51271143 and 51302247)
文摘This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 243 and258 K, respectively, for different time. For comparative study, Cr–15Mo and Cr–62Mo powder mixtures were milled at 243 K for 18 h. Solid solution Cr(Mo) with body-centered cubic(bcc) crystal structure and amorphous Cr(Mo) alloy was obtained during MA process caused by high-energy ball milling. Based on the Miedema's model, the free-energy change for forming either a solid solution or an amorphous in Cr–Mo alloy system is positive but small at a temperature range between 200 and 300 K. The thermodynamical barrier for forming alloy in Cr–Mo system can be overcome when MA occurs at 243 K, and the supersaturated solid solution crystal nuclei with bcc structure form continually, and three supersaturated solid solutions of Cr–62Mo, Cr–35Mo and Cr–15Mo formed. Milling the Cr–35Mo powder mixture at 258 K, the solid solution Cr(Mo) forms firstly, and then the solid solution Cr(Mo) transforms into the amorphous Cr(Mo)alloy with a few of nanocrystallines when milling is prolonged. At higher milling temperature, it is favorable for the formation of the amorphous phase, as indicated by the thermodynamical calculation for immiscible Cr–Mo alloy system.
基金the National Natural Science Foundation of China(12202191,92271103)Natural Science Foundation of Jiangsu Province(BK20210273)+1 种基金Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.
文摘This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:Vt(t, x) + sup u∈U = 0,V(0, x) = Φ0(x).