The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing researc...Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids.展开更多
Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids conten...Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids content is essential for achieving the most effective fluid performance.Proper management of solids content also reduces the risk of tool failures.Traditional solids content analysis methods,such as retort analysis,require substantial human intervention and time,which can lead to inaccuracies,time-management issues,and increased operational risks.In contrast to human-intensive methods,machine learning may offer a viable alternative for solids content estimation due to its pattern-recognition capability.In this study,a large set of laboratory reports of drilling-fluid analyses from 130 oil wells around the world were compiled to construct a comprehensive data set.The relationships among various rheological parameters were analyzed using statistical methods and machine learning algorithms.Several machine learning algorithms of diverse classes,namely linear(linear regression,ridge regression,and ElasticNet regression),kernel-based(support vector machine)and ensemble tree-based(gradient boosting,XGBoost,and random forests)algorithms,were trained and tuned to estimate solids content from other readily available drilling fluid properties.Input variables were kept consistent across all models for interpretation and comparison purposes.In the final stage,different evaluation metrics were employed to evaluate and compare the performance of different classes of machine learning models.Among all algorithms tested,random forests algorithm was found to be the best predictive model resulting in consistently high accuracy.Further optimization of the random forests model resulted in a mean absolute percentage error(MAPE)of 3.9%and 9.6%and R^(2) of 0.99 and 0.93 for the training and testing sets,respectively.Analysis of residuals,their histograms and Q-Q normality plots showed Gaussian distributions with residuals that are scattered around a mean of zero within error ranges of±1%and±4%,for training and testing,respectively.The selected model was further validated by applying the rheological measurements from mud samples taken from an offshore well from the Gulf of Mexico.The model was able to estimate total solids content in those four mud samples with an average absolute error of 1.08% of total solids content.The model was then used to develop a web-based graphical-user-interface(GUI)application,which can be practically used at the rig site by engineers to optimize drilling fluid programs.The proposed model can complement automation workflows that are designed to measure fundamental rheological properties in real time during drilling operations.While a standard retort test can take approximately 2 h at the rig site,such kind of real-time estimations can help the rig personnel to timely optimize drilling fluids,with a potential of saving 2920 man-hours in a given year for a single drilling rig.展开更多
In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activat...This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activating DNA damage response(ATR/CHK1 and ATM/CHK2)pathways and downregulating telomere-binding proteins.Although its therapeutic potential is limited by poor aqueous solubility,solid dispersion(SD)technology may overcome this obstacle.Systematic analysis using PubChem-derived simplified molecular input line entry system identifiers and artificial intelligence-driven FormulationDT platform evaluation(oral formulation feasibility index:0.38)revealed that the SD technology,with superior scalability(32 approved products by 2021)and lower production risks,outperforms lipid-based formulations as an optimal dissolution strategy.Material analysis revealed hydroxypropyl methylcellulose(HPMC)as the optimal carrier with lower hygroscopicity,higher temperature and no intestinal targeting,thus enabling ESCC therapy.HPMC-based SD enhances BIBR1532 solubility and bioavailability for effective ESCC treatment.Future studies should focus on pilot tests for SD fabrication.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
Immunotherapy has brought unprecedented breakthroughs to advanced malignant tumors,yet the immune microenvironment shaped by the tumor stroma has often been underestimated in the traditional focus on the“immune check...Immunotherapy has brought unprecedented breakthroughs to advanced malignant tumors,yet the immune microenvironment shaped by the tumor stroma has often been underestimated in the traditional focus on the“immune checkpoint-T cell”axis.Collagen not only constitutes a mechanical barrier that distinguishes between the periphery and core of solid tumors but also systematically remodels the orientation of metabolism,vasculature,and immune cell phenotypic plasticity through its spatial density,fiber arrangement,and crosslinking patterns(F igure 1)[1,2].Abundant evidence suggests that over-accumulated types I and III collagen drive CD8+T cell exhaustion,NK cell functional inhibition,and tumor-associated macrophage polarization through ligand-receptor networks involving LAIR-1,DDR2,andβ1/β3 integrins[3-6].Mechanistically,collagen engagement of LAIR-1 delivers inhibitory signals in effector lymphocytes,promoting dysfunctional or exhausted states[7-9].In parallel,collagen-β1/β3 integrin signaling activates mechanotransduction pathways(e.g.,FAK/SRC),reducing T-cell motility and immune-tumor contact,while DDR2 activation supports matrix-remodeling programs that limit lymphocyte trafficking.展开更多
High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instab...High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qub...Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sul...This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%--64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 μg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logKd) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.展开更多
This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the ...This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the inactivation kinetics of these strains. Some investigations were carried out for the validation of some simulation models, from the simplest, the kinetics model of Chick-Watson reduced to first order, to rather complex models such as multi-kinetic and Collins-Selleck models. Results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the application of Chick-Watson model in its original form is not representative of the kinetics of UV disinfection. Modification, taking into account the speed change during the disinfection process, has not significantly improved results. On the other hand, the application of Collins-Selleck model demonstrates that it was necessary to exceed a least dose of critical radiation to start the process of inactivation. To better explain the process of inactivation, we have assumed that the action of disinfectant on the survival of lonely microorganisms is faster than its action on suspended solids protected or agglomerated to each others. We can assume in this case the existence of two inactivation kinetics during the processes (parallel and independent) of the first-order. For this reason, the application of a new kinetic model by introducing a third factor reflecting the influence of suspended solids in water on disinfection kinetics appeared to be determinant for modeling UV inactivation of P. aeruginosa in secondary treated wastewater.展开更多
Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each...Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each selected site. Suspended solids and surface sediments were further freeze-dried and microwave digested before determining the metals by ICP-AES. Among the metals analyzed in suspended solids and sediments, contents of Cr, Cu, Mn, Ni, and Zn in suspended solids were significantly higher than those in sediments while contents of Al, Ba, Be, Ca, Co, Fe, K, Mg, Pb, and V in suspended solids were 10%—30% higher than those in sediments. Sr and Ti contents in suspended solids and sediments were very similar. Na content in suspended solids was lower than that in sediments. Heavy metals were significantly accumulated in suspended solids. From the river mouth to the center of Meiliang Bay, contents of Cr, Cu, Pb, and Zn in suspended solids showed a gradual decreasing trend indicating the river(Zhihugang River) still discharged large quantity of heavy metals to Meiliang Bay. The study suggests that the geochemical behaviors and ecological effects of heavy metals in suspended solids may serve as a good indicator for the pollution of lake.展开更多
Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in ...Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.展开更多
High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the o...High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the object of study. Temperatures and TDS contents of both ice and under-ice water were collected together with corresponding ice thickness. TDS profiles were drawn to show the distribution of TDS and to describe TDS migration. The results showed that about 80% (that is 3.602x108 kg) of TDS migrated from ice to water during the whole growth period of ice. Within ice layer, TDS migration only occurred during initial ice-on period, and then perished. The TDS in ice decreased with increasing ice thickness, following a negative exponential-like trend. Within un- der-ice water, the TDS migrated from ice-water interface to the entire water column under the effect of concentra- tion gradient until the water TDS content was uniform. In winter, 6.044x 107 kg (16.78% of total TDS) TDS migrated from water to sedirnent, which indicated that winter is the best time for dredging sediment. The migration effect gives rise to TDS concentration in under-ice water and sediment that is likely to affect ecosystem and water quality of the Yellow River. The trend of transfer flux of ice-water and water-sediment interfaces is similar to that of ice growth rate, which reveals that ice growth rate is one of the determinants of TDS migration. The process and mechanism of TDS migration can be referenced by research on other lakes with similar TDS content in cold and arid areas.展开更多
We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequ...We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequency ultrasonic transducer is used to detect the SC generated by the co-propagating primary L-wave tone burst that is excited by a high-frequency ultrasonic transducer.Essentially,the experimental approach proposed uses a dynamic method to detect the SC generated.The basic requirement is that the central frequency of the low-frequency ultrasonic transducer needs to be near the center of the main lobe frequency range of the time-domain envelope of the primary L-wave tone burst.Under this condition,the main lobe of the frequency spectrum of the SC pulse generated adequately overlaps with that of the low-frequency ultrasonic transducer.This will enable the generated SC pulse to be directly detected by the low-frequency ultrasonic transducer.The performed experimental examination validates the feasibility and effectiveness of the proposed approach for direct detection of the acoustic radiation induced SC generated by L-wave propagation in solids.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金financially supported by the National Key Research and Development Program of China(No.2021YFB2802001)the National Natural Science Foundation of China(Grant Nos.12304349,U20A20211,62275233)the Postdoctoral Fellowship Program of CPSF(GZB20230628,GZC20241465)。
文摘Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids.
文摘Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids content is essential for achieving the most effective fluid performance.Proper management of solids content also reduces the risk of tool failures.Traditional solids content analysis methods,such as retort analysis,require substantial human intervention and time,which can lead to inaccuracies,time-management issues,and increased operational risks.In contrast to human-intensive methods,machine learning may offer a viable alternative for solids content estimation due to its pattern-recognition capability.In this study,a large set of laboratory reports of drilling-fluid analyses from 130 oil wells around the world were compiled to construct a comprehensive data set.The relationships among various rheological parameters were analyzed using statistical methods and machine learning algorithms.Several machine learning algorithms of diverse classes,namely linear(linear regression,ridge regression,and ElasticNet regression),kernel-based(support vector machine)and ensemble tree-based(gradient boosting,XGBoost,and random forests)algorithms,were trained and tuned to estimate solids content from other readily available drilling fluid properties.Input variables were kept consistent across all models for interpretation and comparison purposes.In the final stage,different evaluation metrics were employed to evaluate and compare the performance of different classes of machine learning models.Among all algorithms tested,random forests algorithm was found to be the best predictive model resulting in consistently high accuracy.Further optimization of the random forests model resulted in a mean absolute percentage error(MAPE)of 3.9%and 9.6%and R^(2) of 0.99 and 0.93 for the training and testing sets,respectively.Analysis of residuals,their histograms and Q-Q normality plots showed Gaussian distributions with residuals that are scattered around a mean of zero within error ranges of±1%and±4%,for training and testing,respectively.The selected model was further validated by applying the rheological measurements from mud samples taken from an offshore well from the Gulf of Mexico.The model was able to estimate total solids content in those four mud samples with an average absolute error of 1.08% of total solids content.The model was then used to develop a web-based graphical-user-interface(GUI)application,which can be practically used at the rig site by engineers to optimize drilling fluid programs.The proposed model can complement automation workflows that are designed to measure fundamental rheological properties in real time during drilling operations.While a standard retort test can take approximately 2 h at the rig site,such kind of real-time estimations can help the rig personnel to timely optimize drilling fluids,with a potential of saving 2920 man-hours in a given year for a single drilling rig.
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金Supported by“Continuation”Project of Excellent Doctors,Guangdong Basic and Applied Basic Research Foundation,No.2025A04J5082Guangdong Basic and Applied Basic Research Foundation,No.2024A1515011236.
文摘This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activating DNA damage response(ATR/CHK1 and ATM/CHK2)pathways and downregulating telomere-binding proteins.Although its therapeutic potential is limited by poor aqueous solubility,solid dispersion(SD)technology may overcome this obstacle.Systematic analysis using PubChem-derived simplified molecular input line entry system identifiers and artificial intelligence-driven FormulationDT platform evaluation(oral formulation feasibility index:0.38)revealed that the SD technology,with superior scalability(32 approved products by 2021)and lower production risks,outperforms lipid-based formulations as an optimal dissolution strategy.Material analysis revealed hydroxypropyl methylcellulose(HPMC)as the optimal carrier with lower hygroscopicity,higher temperature and no intestinal targeting,thus enabling ESCC therapy.HPMC-based SD enhances BIBR1532 solubility and bioavailability for effective ESCC treatment.Future studies should focus on pilot tests for SD fabrication.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
文摘Immunotherapy has brought unprecedented breakthroughs to advanced malignant tumors,yet the immune microenvironment shaped by the tumor stroma has often been underestimated in the traditional focus on the“immune checkpoint-T cell”axis.Collagen not only constitutes a mechanical barrier that distinguishes between the periphery and core of solid tumors but also systematically remodels the orientation of metabolism,vasculature,and immune cell phenotypic plasticity through its spatial density,fiber arrangement,and crosslinking patterns(F igure 1)[1,2].Abundant evidence suggests that over-accumulated types I and III collagen drive CD8+T cell exhaustion,NK cell functional inhibition,and tumor-associated macrophage polarization through ligand-receptor networks involving LAIR-1,DDR2,andβ1/β3 integrins[3-6].Mechanistically,collagen engagement of LAIR-1 delivers inhibitory signals in effector lymphocytes,promoting dysfunctional or exhausted states[7-9].In parallel,collagen-β1/β3 integrin signaling activates mechanotransduction pathways(e.g.,FAK/SRC),reducing T-cell motility and immune-tumor contact,while DDR2 activation supports matrix-remodeling programs that limit lymphocyte trafficking.
基金supported by the National Key R&D Program of China(2021YFB3800300).
文摘High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金support by the National Natural Science Foundation of China(Nos.12174379,E31Q02BG)the Chinese Academy of Sciences(Nos.E0SEBB11,E27RBB11)+1 种基金the Innovation Program for Quantum Science and Technology(No.2021ZD0302300)Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-090)。
文摘Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by the National Natural Science Foundation of China (No. 50878206, 50921064)the Ministry of Science and Technology of China (No. 2007AA06Z344,2009BAC57B02, 2009AA063901)
文摘This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%--64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 μg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logKd) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.
基金supported by the European Union (Avi-cenna Project No. 93AVI054)
文摘This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the inactivation kinetics of these strains. Some investigations were carried out for the validation of some simulation models, from the simplest, the kinetics model of Chick-Watson reduced to first order, to rather complex models such as multi-kinetic and Collins-Selleck models. Results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the application of Chick-Watson model in its original form is not representative of the kinetics of UV disinfection. Modification, taking into account the speed change during the disinfection process, has not significantly improved results. On the other hand, the application of Collins-Selleck model demonstrates that it was necessary to exceed a least dose of critical radiation to start the process of inactivation. To better explain the process of inactivation, we have assumed that the action of disinfectant on the survival of lonely microorganisms is faster than its action on suspended solids protected or agglomerated to each others. We can assume in this case the existence of two inactivation kinetics during the processes (parallel and independent) of the first-order. For this reason, the application of a new kinetic model by introducing a third factor reflecting the influence of suspended solids in water on disinfection kinetics appeared to be determinant for modeling UV inactivation of P. aeruginosa in secondary treated wastewater.
文摘Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each selected site. Suspended solids and surface sediments were further freeze-dried and microwave digested before determining the metals by ICP-AES. Among the metals analyzed in suspended solids and sediments, contents of Cr, Cu, Mn, Ni, and Zn in suspended solids were significantly higher than those in sediments while contents of Al, Ba, Be, Ca, Co, Fe, K, Mg, Pb, and V in suspended solids were 10%—30% higher than those in sediments. Sr and Ti contents in suspended solids and sediments were very similar. Na content in suspended solids was lower than that in sediments. Heavy metals were significantly accumulated in suspended solids. From the river mouth to the center of Meiliang Bay, contents of Cr, Cu, Pb, and Zn in suspended solids showed a gradual decreasing trend indicating the river(Zhihugang River) still discharged large quantity of heavy metals to Meiliang Bay. The study suggests that the geochemical behaviors and ecological effects of heavy metals in suspended solids may serve as a good indicator for the pollution of lake.
文摘Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.
基金Financial support was provided by the National Natural Science Foundation of China (50569002,50669004 and 51069007)Natural Science Foundation of Inner Mongolia (200711020604)Key Project from Department of Water Resources of Inner Mongolia (20080105)
文摘High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the object of study. Temperatures and TDS contents of both ice and under-ice water were collected together with corresponding ice thickness. TDS profiles were drawn to show the distribution of TDS and to describe TDS migration. The results showed that about 80% (that is 3.602x108 kg) of TDS migrated from ice to water during the whole growth period of ice. Within ice layer, TDS migration only occurred during initial ice-on period, and then perished. The TDS in ice decreased with increasing ice thickness, following a negative exponential-like trend. Within un- der-ice water, the TDS migrated from ice-water interface to the entire water column under the effect of concentra- tion gradient until the water TDS content was uniform. In winter, 6.044x 107 kg (16.78% of total TDS) TDS migrated from water to sedirnent, which indicated that winter is the best time for dredging sediment. The migration effect gives rise to TDS concentration in under-ice water and sediment that is likely to affect ecosystem and water quality of the Yellow River. The trend of transfer flux of ice-water and water-sediment interfaces is similar to that of ice growth rate, which reveals that ice growth rate is one of the determinants of TDS migration. The process and mechanism of TDS migration can be referenced by research on other lakes with similar TDS content in cold and arid areas.
基金Supported by the National Natural Science Foundation of China(Grant No.11834008)。
文摘We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequency ultrasonic transducer is used to detect the SC generated by the co-propagating primary L-wave tone burst that is excited by a high-frequency ultrasonic transducer.Essentially,the experimental approach proposed uses a dynamic method to detect the SC generated.The basic requirement is that the central frequency of the low-frequency ultrasonic transducer needs to be near the center of the main lobe frequency range of the time-domain envelope of the primary L-wave tone burst.Under this condition,the main lobe of the frequency spectrum of the SC pulse generated adequately overlaps with that of the low-frequency ultrasonic transducer.This will enable the generated SC pulse to be directly detected by the low-frequency ultrasonic transducer.The performed experimental examination validates the feasibility and effectiveness of the proposed approach for direct detection of the acoustic radiation induced SC generated by L-wave propagation in solids.