期刊文献+
共找到196,549篇文章
< 1 2 250 >
每页显示 20 50 100
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions 被引量:1
1
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 SLOPE Concrete stabilizing piles Interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Pushing working voltage of nickel-rich cathode to 4.6 V by stabilizing lattice oxygen redox via spinel Li_(4)Mn_5O_(12)coating
2
作者 Yunting Wang Gaohui Du +11 位作者 Di Han Jiahao Deng Weihao Shi Huayu Li Yongle Wang Siyao Wang Zhan Gao Youqing Wang Shixian Chen Wenqi Zhao Qingmei Su Bingshe Xu 《Journal of Energy Chemistry》 2025年第4期692-702,共11页
Augmenting the working voltage is an effective way to maximize the energy density of Ni-rich layered Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM)to approach its theoretical capacity.However,NCM suffers from structural degra... Augmenting the working voltage is an effective way to maximize the energy density of Ni-rich layered Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM)to approach its theoretical capacity.However,NCM suffers from structural degradation in deep delithiation state,which is often accompanied by severe surface lattice oxygen loss and transition metal dissolution,leading to restricted cycle life.Herein,a facile and effective surfacestrengthening strategy is proposed,in which Mn(OH)_(2)nanoshells are uniformly grown on the NCM surface as a Li~+capturer and then converted to thin spinel Li_(4)Mn_(5)O_(12)layers during subsequent hightemperature sintering.The resultant Li_(4)Mn_(5)O_(12)layers can enhance cathode-electrolyte interface electrochemical stability with inhibited electrolyte corrosion and accelerated Li~+kinetics.The theoretical calculations confirms that the Mn-O bonds formed at the interfaces can effectively decrease the oxygen activity,thereby further inhibiting the lattice oxygen release and structural degradation caused by the irreversible phase transition.Consequently,the Li_(4)Mn_(5)O_(12)-coated NCM displays high capacity retention of 80.3%and 94.9%at 1 C and 5 C compared to the pristine NCM(52.5%and 10.1%)after 200 cycles and can operate stably at 2.7-4.6 V and 60℃.The spinel Li_(4)Mn_(5)O_(12)-coating demonstrates an effective route to enhance the structural/electrochemical stability of NCM for next-generation advanced lithium-ion batteries. 展开更多
关键词 Ni-rich cathode Interfacial stability Li_(4)Mn_5O_(12)coating High voltage stability
在线阅读 下载PDF
Stabilizing the solid-solution sodium storage in Cr-substituted Na_(3)V_(2)(PO_(4))_(3) cathode for aqueous sodium-ion batteries with long-term stability 被引量:1
3
作者 Qinyan Jian Tinghong Gao +4 位作者 Wensheng Yang Xinhai Wang Lishan He Jiarui Liu Yunjun Ruan 《Journal of Energy Chemistry》 2025年第6期797-805,I0016,共10页
Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials ... Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) Cr substitution Insertion/extraction mechanism Long-term cycling stability Aqueous sodium-ion battery
在线阅读 下载PDF
Dynamics of the perturbed Calogero-Moser system:well-posedness,stability and blow up
4
作者 LIU Qianle WANG Zhong ZHU Weipeng 《中山大学学报(自然科学版)(中英文)》 北大核心 2026年第1期157-168,共12页
We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separatio... We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium. 展开更多
关键词 Calogero-Moser system WELL-POSEDNESS blow up stabilITY
在线阅读 下载PDF
Stabilizing Cu^(+)active sites by small molecule modulation on copper electrocatalyst for boosting semi-hydrogenation of alkynes in water
5
作者 Ran Li Hui Li +7 位作者 Jing Luo Jie Zhou Qi Sui Yujie Gao Hongshuai Zheng Lixin Xia Fei Li Yi Jiang 《Journal of Energy Chemistry》 2025年第3期800-807,共8页
Selective electrocatalytic semi-hydrogenation(ECSH)of alkynes in water using Cu catalysts is highly relevant for the production of value-added chemicals.However,achieving high olefin selectivity still poses extreme ch... Selective electrocatalytic semi-hydrogenation(ECSH)of alkynes in water using Cu catalysts is highly relevant for the production of value-added chemicals.However,achieving high olefin selectivity still poses extreme challenges due to the susceptibility of the copper cathode in a reduction environment.Herein,a small molecule modulation electrodeposition strategy is introduced that regulates the structure of Cubased materials through modification with citric acid(CA)ligands,aiming for highly active and selective ECSH.The as-prepared EDCu-CA electrode achieves more than 97%alkyne conversion and 99%olefin selectivity.In-situ Raman and Auger electron spectroscopy(AES)data provide evidence that active Cu^(+)sites can stably exist in the EDCu-CA during the catalytic process.Density functional theory(DFT)calculations indicate that the modulation by CA contributes to maintaining Cu in a positive valence state,and Cu^(+)can inhibit the over-hydrogenation of olefins.Moreover,by utilizing a large-area electrode for longterm electrolysis,g-level conversion and a 92%separation yield of olefin can be achieved,demonstrating a viable application prospect.This study offers a promising route for designing Cu-based catalysts for the highly selective electrocata lytic conversion of organic substrates to value-added chemicals in water. 展开更多
关键词 Electrocatalysis Cu catalysts Alkyne semi-hydrogenation Citric acid modulation stabilizing Cu^(+)
在线阅读 下载PDF
Suppressing catalyst reconstruction in neutral electrolyte: stabilizing Co-O-Mo point-to-point connection of cobalt molybdate by tungsten doping for oxygen evolution reaction
6
作者 Zhouzhou Wang Qiancheng Zhou +9 位作者 Li Luo Yaran Shi Haoran Li Chunchun Wang Kesheng Lin Chengsi Wang Libing Zhu Linyun Han Zhuo Xing Ying Yu 《Chinese Journal of Catalysis》 2025年第9期146-158,共13页
Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-dope... Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-doped cobalt molybdate(WDCMO)catalyst was synthesized for efficient and durable OER under neutral electrolyte.It is demonstrated that catalyst reconstruction is suppressed by W doping,which stabilizes the Co-O-Mo point-to-point connection in CoMoO_(4) architecture and stimulates to a lower valence state of active sites over the surface phase.Thereby,the surface structure maintains to avoid compound dissolution caused by over-oxidation during OER.Meanwhile,the WDCMO catalyst promotes charge transfer and optimizes*OH intermediate adsorption,which improves reaction kinetics and intrinsic activity.Consequently,the WDCMO electrode exhibits an overpotential of 302 mV at 10 mA cm^(-2) in neutral electrolyte with an improvement of 182 mV compared with CoMoO4 electrode.Furthermore,W doping significantly improves the electrode stability from 50 h to more than 320 h,with a suppressive potential attenuation from 2.82 to 0.29 mV h^(-1).This work will shed new light on designing rational electrocatalysts for neutral OER. 展开更多
关键词 Neutral oxygen evolution reaction Suppressive catalyst reconstruction Cobalt molybdate Tungsten doping stability
在线阅读 下载PDF
Double nano-emulsions for stabilizing Vitamin C and enhancing antioxidant capacity with macadamia oil and tea tree essential oil
7
作者 Dinh Quan Nguyen Ngoc Thien Phuc Nguyen +4 位作者 Thi Trinh To Le Minh Dat Nguyen Thi Khanh Van Pham Gia Man Vu Long Phuoc Lieu 《Oil Crop Science》 2025年第3期177-185,共9页
Vitamin C,a potent antioxidant with broad therapeutic applications,is limited by rapid degradation under environmental stressors,which compromises its stability and bioactivity.This study addresses these limitations b... Vitamin C,a potent antioxidant with broad therapeutic applications,is limited by rapid degradation under environmental stressors,which compromises its stability and bioactivity.This study addresses these limitations by formulating a double nano-emulsion(W/O/W)system incorporating macadamia oil and tea tree oil,using homogenization and phase inversion temperature(PIT)techniques.Comprehensive physicochemical charac-terization,including droplet size,polydispersity index(PDI),zeta potential,turbidity,Fourier transform infrared spectroscopy(FTIR),and SEM,was conducted alongside stability assessments under varying pH,temperature,and storage conditions.The optimized nano-emulsions exhibited nanoscale droplet sizes(10-40 nm),low PDI values(indicating high uniformity),and robust stability.Interestingly,the formulation with 2%W/O loading,with a particle size of 11.57 nm and a PDI of 0.04,demonstrated an antioxidant capacity of 4622.62μg ascorbic acid equivalents(AA)/g,which was significantly higher(p<0.05)compared to both natural oils(macadamia oil:20.91μg AA/g,tea tree oil:16.86μg AA/g)and a 10%Vitamin C aqueous solution(592.94μg AA/g).FTIR analysis confirmed the molecular integrity of Vitamin C and its successful encapsulation with macadamia and tea tree oils,while SEM images revealed uniformly spherical and well-dispersed droplets.Moreover,the formulation retained its structural integrity and antioxidant functionality under diverse pH and thermal conditions.These findings underscore the potential of double nano-emulsion systems to overcome the stability challenges of Vitamin C,offering a promising approach to enhance its bioavailability and therapeutic performance in phar-maceutical and cosmetic applications. 展开更多
关键词 Double nano-emulsions Vitamin C stabilization Antioxidant capacity Macadamia oil Tea tree essential oil
在线阅读 下载PDF
Muti-scale analysis of solidification/stabilization(S/S)of Pbcontaminated dredged sediment using nano-SiO_(2)modified cement
8
作者 Wei Zhang Lei Lang +3 位作者 Zhen Qi Yao-Yi Wang Qiang Xue Jiang-Shan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5781-5799,共19页
The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified... The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified with nano-silica(NS)across a continuum from nanoscale interactions to macroscopic performance.For this,a series of macroscopic experiments was conducted to evaluate the mechanical performance and lead-encapsulation efficiency,including unconfined compressive strength(UCS)and toxicity characteristic leaching procedure(TCLP).Microstructural and phase transformations were characterized using X-ray diffraction,thermogravimetric analysis,and scanning electron microscope.Molecular dynamics simulations revealed the interactions between NS-modified cement,calcium silicate hydrates(C-S-H)gel,and Illite,focusing on interaction energies,atomic density distributions and structural changes.Macroscopic analyses demonstrated that increasing NS content from 0%to 8%improved Pb-immobilization rate from 88.7%to 97.6%and enhanced UCS from 764 kPa to 1358 kPa.These improvements were attributed to NS enhancing the microstructural integrity of C-S-H gel and filling pores in samples.Nanoscale simulations elucidated that Pb-stabilization occurs through coordination bonds with oxygen atoms in the C-S-H silicon chains and on Illite surfaces,complemented by the formation of stable Pb_(3)(CO)_(3)(OH)_(2)precipitates.Additionally,the simulations revealed that Ca^(2+)migration from hydration products to mineral surfaces generated substantial repulsive interaction energies,reducing Illite layer dispersion.However,the presence of Pb impeded further Ca^(2+)migration,leading to expansion of the C-S-H gel,which collectively degraded the mechanical properties of the material.Furthermore,wet-dry and freeze-thaw cycles showed that after 10 cycles,UCS and TCLP results still met the United States Environmental Protection Agency standards,confirming long-term durability.This study provides a theoretical foundation for resource utilization of the contaminated sediments and offers a perspective for design of the cement-based curing agents,particularly in addressing variations in pollutant concentrations and environmental conditions,advancing the application of responsive and controlled release curing agents. 展开更多
关键词 Pb-contaminated dredged sediments Multi-scale Molecular dynamics simulation Nano-silica modified cement Solidification/stabilization mechanism
在线阅读 下载PDF
Stabilizing subgrades of transport structures by injecting solidifying solutions in cold regions
9
作者 P.O.Lomov A.L.Lanis +1 位作者 D.A.Razuvaev M.G.Kavardakov 《Research in Cold and Arid Regions》 CSCD 2021年第5期357-365,共9页
Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in te... Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in temperature and their subgrade condition within the active zone due to the structures'technogenic impact.Design solutions for the fifty-year-old structures fail to ensure in all cases their reliable operation at the present time.The greatest danger to the reliable operation of railway lines in cold regions is uneven deformations of bridges,which are barrier places.Therefore,the solution to this problem is urgent especially due to the necessity of increase carrying capacity.The purpose of this study is to increase reliability of bridge operation in cold regions through strengthening the subgrade by reinforcement with injection of solidifying solutions.The problem of uneven deformations due to permafrost degradation is considered using the example of a railway bridge located in the northern line of the Krasnoyarsk railway.Deformations of the bridge abutments began immediately after the construction was completed and the bridge was open for traffic-since 1977.Permafrost degradation was developing more actively straight under the abutments due to higher thermal conductivity of the piles concrete.Notably,thawing intensity of frozen soils under the bridge abutments is uneven due to its orientation to the cardinal points.The analysis of archive materials and results of the geodetic survey made it possible to systematize the features of augmenting deformations of each abutment over time.The engineering-geological survey with drilling wells near the abutments ensured determination of soil characteristics,both in the frozen and thawed states.Thermometric wells were arranged to measure temperatures.The analysis and systematization of the data obtained allowed us to develop geotechnical models for each abutment of the bridge.The peculiarity of these models is allowance for changes in the strength and deformation characteristics of the soil calculated layers depending on changes in temperature and the soil condition.Thus,different calculated geological elements with the corresponding strength and deformation characteristics were identified in the soil layers of the same origin.The analysis of the systematized geodetic data allowed us to confirm adequacy of the developed geotechnical models.Studies carried out using geotechnical models made it possible to predict improvement of physical and mechanical characteristics of the subgrade to prevent further growth deformations of the bridge abutments.The method of reinforcement by injection is proposed.Injecting a solution under pressure leads to strengthening of weakened thawed soils and improving their physical and mechanical properties.This research theoretically substantiates and develops the geotechnical models of the reinforced pier footing of bridge abutments by injection of solidifying solutions.The models take into account the reinforcement parameters and elements for the case in question.The influence of reinforcement on the change in physical and mechanical properties of the soil mass is determined. 展开更多
关键词 reinforcement of soils injection of solidifying solution strengthening of pier footing soils geotechnical model bridge abutments deformations plastic frozen soil permafrost degradation
在线阅读 下载PDF
Controlling externally solidified crystals and porosity for enhancing mechanical properties of a die-casting aluminum-silicon alloy
10
作者 Yi-hui Zhang Xiang-yi Jiao +6 位作者 Peng-yue Wang Yi-xian Liu Jin-rui Wang Wen-ning Liu Li-jun Shi Cheng-gang Wang Shou-mei Xiong 《China Foundry》 2026年第1期94-100,共7页
The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-cast... The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications. 展开更多
关键词 high pressure die casting aluminum-silicon alloy externally solidified crystals POROSITY shot sleeve
在线阅读 下载PDF
What signals does 2025 Action Plan for Stabilizing Foreign Investment send to the textile industry?
11
作者 Zhao Xinhua 《China Textile》 2025年第2期24-25,共2页
ln order to improve the level of investment promotion and redouble effortsto enhance services,on February l9th,the 2025 Action Plan for StabilizingForeign lnvestment was released,proposing 20 measures in four aspects.... ln order to improve the level of investment promotion and redouble effortsto enhance services,on February l9th,the 2025 Action Plan for StabilizingForeign lnvestment was released,proposing 20 measures in four aspects.Cur-rently,with increasing uncertainties in the external environment,China facesmultple difficulties and challenges in attracting foreign investment. 展开更多
关键词 stabilizing Foreign Investment Investment Promotion Service Enhancement Textile Industry enhance serviceson improve level investment promotion Action Plan action plan
在线阅读 下载PDF
Solidification/stabilization of Dewatered Sludge with Multi-Component Solidifying Agents 被引量:1
12
作者 Jun-Qiu Jiang Kun Wang +3 位作者 Zi-Ye Li Yang Li Qing-Liang Zhao Guang-Yi Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期46-52,共7页
This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components ... This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent. 展开更多
关键词 dewatered sludge SOLIDIFICATION curing agent stabilizationCLC number:X705 Document code:AArticle ID:1005-9113(2013)06-0046-07
在线阅读 下载PDF
Innovative Strategies to Overcome Stability Challenges of Single‑Atom Nanozymes
13
作者 Rong Guo Qiuzheng Du +3 位作者 Yaping He Haoan Wu Yu Zhang Ziwei Jing 《Nano-Micro Letters》 2026年第3期725-756,共32页
Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomed... Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomedical field.However,stability issues may impede the clinical translation of SAzymes.This review provides a comprehensive overview of the applications of SAzymes in various biomedical fields,including disease diagnosis(e.g.,biosensors and diagnostic imaging),antitumor therapy(e.g.,photothermal therapy,photodynamic therapy,sonodynamic therapy,and immunotherapy),antimicrobial therapy,and anti-oxidative stress therapy.More importantly,the existing challenges of SAzymes are discussed,such as metal atom clustering and active site loss,ligand bond breakage at high temperature,insufficient environment tolerance,biosecurity risks,and limited catalytic long-term stability.Finally,several innovative strategies to address these stability concerns are proposed—synthesis process optimization(space-limited strategy,coordination site design,bimetallic synergistic strategy,defect engineering strategy,atom stripping-capture),surface modification,and dynamic responsive design—that collectively pave the way for robust,clinically viable SAzymes. 展开更多
关键词 Single-atom nanozymes Clinical translation stability issues Innovative strategies BIOCOMPATIBILITY
在线阅读 下载PDF
Increased NH3-SCR activity and stability of Fe-Beta catalysts achieved by using Al-rich zeolite
14
作者 Tongliang Zhang Zhongqi Liu +7 位作者 Jingjing Liu Minghui Jiang Xue Xia Xinyue Shan Yulong Shan Xiaoyan Shi Yunbo Yu Hong He 《Journal of Environmental Sciences》 2026年第1期809-818,共10页
Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a meth... Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a method to construct superior Fe-Beta catalysts based on Al-rich zeolites.This strategy successfully promotes the formation of NH3-SCR-active isolated Fe^(3+)species,thus effectively improving the low-temperature activity of the Fe-Beta catalysts.Thanks to the abundant Brønsted acid sites of the Al-rich zeolite,the Fe_(2)O_(3) particles are redispersed and anchored as isolated Fe^(3+)during hydrothermal aging.This dynamic evolution of Fe species makes up for the adverse effect of dealumination of the Al-rich zeolite framework and achieves high stability for the Al-rich Fe-Beta catalyst.This study may promote the understanding of highly efficient and stable catalyst design using Al-rich zeolites. 展开更多
关键词 Fe-Beta Al-rich zeolite NH3-SCR hydrothermal stability
原文传递
Stability enhancement of MnO_(x)-CeO_(2)via hydrophobic modification for NO reduction by NH_(3)
15
作者 Boyu Wu Shengen Zhang +2 位作者 Shengyang Zhang Bo Liu Bolin Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期357-368,共12页
MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO... MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments. 展开更多
关键词 Mn-Ce catalyst NH_(3)-SCR hydrophobic modification enhanced stability
在线阅读 下载PDF
Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries
16
作者 Jingjing Dong Liu Pei +6 位作者 Yifei Wang Yan Liu Xingliang Liu Zhidan Diao Jianling Li Yejing Li Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期306-314,共9页
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte... The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)). 展开更多
关键词 sodium-ion batteries Cu/Ti doping cyclic stability layered cathode material
在线阅读 下载PDF
Ultrasound biomicroscopy analysis of age-related trends in lens stability in cortical cataracts
17
作者 Jia-Jun Chen Ling Wang +3 位作者 Sha-Sha Xue Zhi-Ying Yu Yun-Xiao Wang Feng-Lei Wang 《International Journal of Ophthalmology(English edition)》 2026年第2期252-259,共8页
AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was c... AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was conducted on patients with age-related cortical cataracts scheduled for phacoemulsification surgery.Preoperative ultrasound biomicroscopy(UBM)images were collected and analyzed.Initially,patients were stratified into two age groups:<60y and≥60y,with no significant intergroup differences in sex or eye laterality.For further analysis,participants were subdivided into three age strata:<60y,60-75y,and>75y.The ILA was measured in four quadrants(superior,inferior,nasal,and temporal).Intergroup differences in ILA were compared,and correlations between age and ILA parameters were analyzed using statistical methods.RESULTS:The sample data were categorized into three groups according to age,<60y(113 patients;55.8%female),60–75y(245 patients;61.0%female),and>75y(70 patients;50.2%female).The superior quadrant ILA increased progressively with age stratification(P=0.02),and the maximum ILA difference(ΔILA)was significantly higher in patients over 75y(P<0.01).Simple linear regression analysis demonstrated a positive correlation between age and ILA in the superior(Y=7.487+0.096X,R=0.191,P<0.001)and temporal(Y=10.254+0.052X,R=0.104,P=0.032)quadrants.Additionally,the mean ILA across all quadrants(ILAmean)andΔILA were positively correlated with age(ILAmean:Y=9.721+0.055X,R=0.138,P=0.004;ΔILA:Y=3.267+0.044X,R=0.006,P<0.05).CONCLUSION:In patients with age-related cortical cataracts,ILA increases with age,particularly in the superior and temporal quadrants,suggesting that advanced age is associated with greater lens deviation and decreased lens stability.UBM imaging can effectively evaluate the status of the zonule and lens stability,providing crucial evidence for personalized surgical planning based on patients’age. 展开更多
关键词 iris-lens angle age-related cortical cataract lens stability ultrasound biomicroscopy PHACOEMULSIFICATION surgical planning
原文传递
Lattice Anchoring Stabilizesα-FAPbI_(3) Perovskite for High-Performance X-Ray Detectors
18
作者 Yu-Hua Huang Su-Yan Zou +5 位作者 Cong-Yi Sheng Yu-Chuang Fang Xu-Dong Wang Wei Wei Wen-Guang Li Dai-Bin Kuang 《Nano-Micro Letters》 2026年第1期337-354,共18页
Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection appl... Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection application.However,the presence of larger FA^(+)cation induces to an expansion of the Pb-I octahedral framework,which unfortunately affects both the stability and charge carrier mobility of the corresponding devices.To address this challenge,we develop a novel low-dimensional(HtrzT)PbI_(3) perovskite featuring a conjugated organic cation(1H-1,2,4-Triazole-3-thiol,HtrzT^(+))which matches well with theα-FAPbI_(3) lattices in two-dimensional plane.Benefiting from the matched lattice between(HtrzT)PbI_(3) andα-FAPbI_(3),the anchored lattice enhances the Pb-I bond strength and effectively mitigates the inherent tensile strain of theα-FAPbI_(3) crystal lattice.The X-ray detector based on(HtrzT)PbI_(3)(1.0)/FAPbI_(3) device achieves a remarkable sensitivity up to 1.83×10^(5)μC Gy_(air)^(−1) cm^(−2),along with a low detection limit of 27.6 nGy_(air) s^(−1),attributed to the release of residual stress,and the enhancement in carrier mobility-lifetime product.Furthermore,the detector exhibits outstanding stability under X-ray irradiation with tolerating doses equivalent to nearly 1.17×10^(6) chest imaging doses. 展开更多
关键词 α-FAPbI_(3)perovskite Conjugated organic cation Lattice anchoring Phase stability X-ray detectors
在线阅读 下载PDF
Performance and Mechanism Study of Solidifying Zinc-Contaminated Soil Using Red Mud-Carbide Slag-Phosphogypsum Synergistic Cement
19
作者 ZHANG Jieya YANG Zhen +1 位作者 WU Min DONG Xiaoqiang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期96-106,共11页
We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent... We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent.The mixing ratios of the four materials are determined by comparing the strength,permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil.Microscopic characteristics of the solidified uncontaminated soil and solidified Zn^(2+)-contaminated soil were observed using scanning electron microscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy.Furthermore,the heavy metals speciation in both pure cement and mixed-material solidified soil was examined,demonstrating the beneficial role of the mixed-type curing agent in stabilizing heavy metals.The research results indicate that Zn^(2+)degrade the strength of the solidified soil by up to 90%.The permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil easily meet standard,especially with Zn^(2+)leaching concentration well below the environmental protection limit.Furthermore,most Zn^(2+)exists in forms with lower biological and chemical reactivity.Both the solidified Zn^(2+)-contaminated soil and uncontaminated soil resulted in the formation of hydrated products containing elements such as silicon,aluminum,calcium,and sulfur.Additionally,the solidified Zn^(2+)-contaminated soil produced zinc-containing compounds and a large amount of rod-shaped ettringite. 展开更多
关键词 SOLIDIFICATION/stabilIZATION Zn^(2+)-contaminated soil engineering characteristics environmental indicators solidification mechanism
原文传递
Effects of stabilizing heat treatment on microstructures and creep behavior of Zn-10Al-2Cu-0.02Ti alloy 被引量:3
20
作者 林高用 张锐 +2 位作者 王莉 雷玉霞 贺家健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期86-91,共6页
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti... The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment. 展开更多
关键词 Zn-10Al-2Cu-0.02Ti alloy stabilizing heat treatment microstructure creep behavior
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部