期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Properties of Solid Waste-based Solidified Sludge Improved by Microbially Induced Calcium Carbonate Precipitation Technology 被引量:1
1
作者 HUANG Hu LIU Zhihua +6 位作者 LIU Dee FENG Yang ZHANG Hao CHEN Depeng HE Zhihai FENG Pan RONG Hui 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期533-545,共13页
We examined the enhancing effects of different dosages of product of Centrifugation of Bacterial Liquid(product of CBL)on the performance of slag-fGD gypsum-cement-bentonite-sludge system using MICP technology.We anal... We examined the enhancing effects of different dosages of product of Centrifugation of Bacterial Liquid(product of CBL)on the performance of slag-fGD gypsum-cement-bentonite-sludge system using MICP technology.We analyzed the multifaceted performance of the solidified sludge from macroscopic and microscopic perspectives.The experimental results reveal that the increase in product of CBL dosage results in positive impacts on the solidified sludge,including higher side compressive strength,lower leachate heavy metal concentration,and improved crack repair rates.At a 0.4%product of CBL doping concentration,the strength of the solidified sludge is enhanced by 26.6%at 3 d,61.2%at 7 d,and 13.9%at 28 d when compared to the unmodified solidified sludge.After 28 days,the concentrations of Zn and Cu ions reduce by 58%and 18%,respectively,and the crack repair rate is 58.4%.These results demonstrate that the increase in heavy metal concentration in the leachate leads to an increase in the strength of the solidified sludge.The strengthening procedure heavily relies on the mineralisation reaction of Bacillus pasteurii,which produces a substantial amount of CaCO_(3)to cement the particles and fill the pores initially.The modified solidifying sludge exhibits a self-repairing effect and an enhanced multifaceted performance as a result of oxygen being restored after crack formation and reactivation of Bacillus pasteurii.Such conditions facilitate the body's recovery. 展开更多
关键词 SOLIDIFIED SLUDGE MICP SOLIDIFICATION stabilization SELF-HEALING
原文传递
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
2
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
在线阅读 下载PDF
Mechanical and disintegration properties of solidified loess mixed with gellan gum and guar gum
3
作者 SONG Bingjie ZHANG Hong +1 位作者 ZHAO Xin YANG Yuntao 《Journal of Mountain Science》 2025年第8期3123-3138,共16页
Loess slopes in cold and arid regions are susceptible to shallow soil degradation,which may trigger severe environmental problems related to soil erosion.To address this environmental challenge,this study selected a c... Loess slopes in cold and arid regions are susceptible to shallow soil degradation,which may trigger severe environmental problems related to soil erosion.To address this environmental challenge,this study selected a compound ecological curing agent composed of gellan gum and guar gum for stabilizing shallow loess slopes.Triaxial compression and disintegration tests were employed to comparatively analyze the effects of compound gum content,mass mix ratio,and curing age on the mechanical and disintegration properties of solidified loess.The curing mechanism was analyzed using scanning electron microscopy(SEM),and the ecological protection effect was monitored for a 60-day period.The results indicate that gellan gum,guar gum,and the compound gum can enhance the mechanical and disintegration properties of loess,promote plant growth,and optimize the ecological environment.However,the combination of gellan gum and guar gum proves more effective than using either gellan gum or guar gum alone.Considering the effects on mechanical properties,disintegration performance,and material economy,the disintegration rate of loess decreases by 75.72%compared to plain loess when the compound glue content is 0.5%,the mixing ratio of gellan gum to guar gum is 3:7 and the curing age is 7 days.Meanwhile,the cohesion and internal friction angle increase by 118.06%and 10.97%,respectively.Moreover,the disintegration performance and mechanical properties of the samples first increase and then decrease with the increase in compound glue and the mix ratio and are basically stabilized after the curing age reaches 7d. 展开更多
关键词 Solidified loess Gellan gum Guar gum Mechanical property Disintegration performance Slope protection
原文传递
The Solidifying Power of Myth in Cassirer’s Philosophy of Symbolic Forms
4
作者 SHEN Bo 《Journal of Literature and Art Studies》 2025年第3期152-157,共6页
Cassirer argues that humans are animals of symbols,and these symbolic forms encompass not only the science of rational logic but also non-logical elements such as mythology and primitive religions.Previous research on... Cassirer argues that humans are animals of symbols,and these symbolic forms encompass not only the science of rational logic but also non-logical elements such as mythology and primitive religions.Previous research on Cassirer’s philosophy of symbolic forms has primarily focused on philosophical connotations,philosophical thoughts,cultural philosophy,and other aspects,yielding abundant results.By examining mythology within the context of symbolic forms,we discover a force within it,namely,the solidifying power.This solidifying power demands that mythology maintain fixed and established forms during its emergence and development,thereby distinguishing it from other symbolic forms.By exploring the development trends and manifestations of the solidifying power in mythology,we can gain a clearer understanding of the path of human intellectual development from childhood to maturity,thus answering the historical question of human essence. 展开更多
关键词 CASSIRER philosophy of symbolic forms MYTHOLOGY solidifying power
在线阅读 下载PDF
Experimental investigation on characteristics of hook in continuously cast slab of low carbon steel
5
作者 Xiao-hua Wang Wen-jie Tong +3 位作者 Sen Luo Ye-lian Zhou Wei-ling Wang Miao-yong Zhu 《Journal of Iron and Steel Research International》 2025年第7期1901-1909,共9页
During the continuous casting process of low carbon steel,the solidified hook formed in the mold has great effects on the surface quality of the cast slab.Some factory experiments have been conducted to investigate th... During the continuous casting process of low carbon steel,the solidified hook formed in the mold has great effects on the surface quality of the cast slab.Some factory experiments have been conducted to investigate the microscopic characteristics and reveal the influence of process parameters on solidified hooks.The depth of the hooks showed a positive correlation with the deflection angle,length,and oscillation mark(OM)depth,which indicates that the OM depth can serve as an approximate indicator for evaluating the depth of the solidified hooks.On the wide and narrow faces of the cast slab,the depth of the solidified hooks and the temperature distribution in the mold show opposite trends,with lower depths of solidified hooks at positions with higher temperatures.In addition,the influence of process parameters on solidified hooks was analyzed.With the increase in superheat,not only the depth of solidified hooks gradually decreases,but also the ratio of depression-typed marks increases.Increasing casting speed and decreasing immersion depth of the submerged entry nozzle will both lead to a decrease in the depth of the solidified hook. 展开更多
关键词 Continuous casting Mold.Solidified hook Oscillation mark SUPERHEAT
原文传递
Performance and Characterization of Fluidized Solidified Soil Prepared by Synergistic Cement and Phosphogypsum with Slag Powder-Fly Ash
6
作者 CHEN Shujie FENG Chao +6 位作者 FU Tengfei YU Demei ZHANG Hengchun ZHANG Feng WANG Yao HUANG Xia WANG Yulin 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1320-1329,共10页
Fluidized solidified soil(FSS)is an innovative backfill material that offers benefits such as easy pumping and straightforward construction.This study examined how varying the water-soil ratio and the curing agent dos... Fluidized solidified soil(FSS)is an innovative backfill material that offers benefits such as easy pumping and straightforward construction.This study examined how varying the water-soil ratio and the curing agent dosage affect the properties and microstructure of FSS.The strength development mechanism was investigated when composite solidification agents were used.The findings show that both the water-solid ratio and the curing agent dosage can affect the microstructure of FSS,thereby affecting its performance.When the water-solid ratio increases from 0.52 to 0.56,the unconfined compressive strength(UCS)and flexural strength of the FSS decrease by 34.1% and 39.3% after 28 d.Conversely,the curing agent dosage increasing from 10% to 30% will increase both UCS and flexural strength by 11.2 times and 11.1 times.As the curing age increases,the number of cracks at failure point in the FSS will increase and lead to a more complete failure.Numerous needle-like AFt,C-S-H gel,and C-(A)-S-H gel create a three-dimensional network by adhering to soil particles. 展开更多
关键词 fluidized solidified soil water-solid ratio curing agent dosage maintenance age microscopic analysis:mechanism of strength formation
原文传递
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy 被引量:3
7
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
在线阅读 下载PDF
Influence rules of early transition elements on rapid solidified structure and nanocrystallization behaviors of Fe-Si-B-Cu soft magnetic alloys with high Cu content 被引量:1
8
作者 Xingjie Jia Yaqiang Dong +6 位作者 Wei Zhang Ling Zhang Yanqiu Li Aina He Jiawei Li Wenjun Wang Baogen Shen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期157-166,共10页
Unique rapid solidified structure and nanocrystallization mechanism enable the Fe-based nanocrystalline alloys with high Cu content excellent soft magnetic properties and good manufacturability,and also results in unu... Unique rapid solidified structure and nanocrystallization mechanism enable the Fe-based nanocrystalline alloys with high Cu content excellent soft magnetic properties and good manufacturability,and also results in unusual phenomena in terms of alloying effects.In the present work,we systematically studied the influence rules of early transition elements on the rapid solidified structure and nanocrystallization behaviors of Fe-Si-B-Cu soft magnetic alloys with high Cu content and explored the related mechanisms.In terms of rapid solidified structure,the additions of early transition elements always inhibit the for-mation of pre-existingα-Fe crystals even eliminate them,and the additions that could produce larger atomic mismatch parameter(δ)and negative mixing enthalpy(△H_(mix))show stronger effects.In terms of nanocrystallization behaviors,the increases inδand negative△H_(mix) weaken the competitive growth between the pre-existing nanocrystals during annealing and then coarsen the nanostructure of the an-nealed alloys and deteriorate their magnetic softness,while the excessive increases inδand negativeHmix could significantly suppress the growth ofα-Fe crystals by diffusion inhibition during annealing and thus remarkable refine the nanostructure of the annealed alloys and improve their magnetic softness. 展开更多
关键词 Nanocrystalline soft magnetic alloys Early transition elements Rapid solidified structure Nanocrystallization behaviors Pre-existingα-Fe crystals
原文传递
Experimental Study on Engineering Behavior of Solidified Soil for Scour Repair and Protection
9
作者 WU Xiao-ni LI Ru-yu +5 位作者 SHU Jian TANG Chao CHEN Jin-jian WANG Hui-li JIANG Hai-li WANG Xiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期625-635,共11页
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve... A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference. 展开更多
关键词 scour repair and protection solidified soil PUMPABILITY STRENGTH flow properties anti-scour performance
在线阅读 下载PDF
On the oxidation and interdiffusion behavior of an AlCoCrFeNiY high-entropy alloy bond coat on a directionally solidified Ni-based superalloy
10
作者 Xuanzhen Liu Ying Chen +5 位作者 Ling Li Aihui Huang Han Zhang Xiancheng Zhang Jie Lu Xiaofeng Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期64-78,共15页
The oxidation and interdiffusion behavior of a novel AlCoCrFeNiY bond coat deposited on a directionally solidified Ni-based superalloy were systematically studied at 1050,1100 and 1150°C,and compared with a conve... The oxidation and interdiffusion behavior of a novel AlCoCrFeNiY bond coat deposited on a directionally solidified Ni-based superalloy were systematically studied at 1050,1100 and 1150°C,and compared with a conventional NiCoCrAlY coating deposited on the same substrate.The AlCoCrFeNiY bond coat exhibits lower oxide growth rates due to its large columnar grains and low Al activity at the oxide scale/bond coat interface.Meanwhile,AlCoCrFeNiY has higher resistance to oxide spallation than NiCoCrAlY,which is attributed to the formation of a clean and defect-free metal/oxide interface.Significant interdiffusion occurs across the AlCoCrFeNiY/superalloy substrate interface.Our experimental evidence and thermody-namic modelling suggest that Fe accelerates interdiffusion and destabilizes theγ’phase,thereby causing the formation of a thick andγ’-depleted interdiffusion zone.In addition,the AlCoCrFeNiY bond coat un-dergoes more Al depletion and subsequentβtoγtransformation compared with NiCoCrAlY.Based on the findings in this work,a novel AlCoCrFeNiY/NiCoCrAlY double-layer bond coat was designed,tested and validated to achieve optimal balance between oxidation and interdiffusion. 展开更多
关键词 AlCoCrFeNi bond coat Directionally solidified Ni-based superalloy OXIDATION INTERDIFFUSION High velocity air-fuel spraying
原文传递
快速凝固硅铝合金材料的组织与性能 被引量:10
11
作者 李志辉 张永安 +5 位作者 熊柏青 朱宝宏 刘红伟 王锋 魏衍广 张济山 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第9期1659-1663,共5页
针对电子信息工业对新型结构功能一体化电子封装材料的应用需求,采用喷射成形与热压致密化相结合的方法制备高Si含量(质量分数为50%~70%Si)的系列Si-Al合金,并利用金相显微镜、扫描电镜、硬度测试仪、热膨胀仪等手段研究该材料的显微... 针对电子信息工业对新型结构功能一体化电子封装材料的应用需求,采用喷射成形与热压致密化相结合的方法制备高Si含量(质量分数为50%~70%Si)的系列Si-Al合金,并利用金相显微镜、扫描电镜、硬度测试仪、热膨胀仪等手段研究该材料的显微组织、力学性能和热物理性能。结果表明,喷射成形高硅铝合金的沉积态显微组织细小弥散,初生硅呈不规则形状,均匀弥散地分布在铝基体中;对沉积坯件进行适当的热压致密化处理可以有效地消减喷射成形制坯工艺过程中所形成的疏松和孔洞,提高材料的致密度。经热压致密化处理的喷射成形高硅铝合金材料具有优越的热物理性能以及良好的力学性能,是一种综合性能优越的结构功能一体化电子封装材料。 展开更多
关键词 快速凝固 铝合金材料 组织与性能 Materials Rapidly SOLIDIFIED 喷射成形 热压致密化 电子封装材料 致密化处理 热物理性能 高硅铝合金 显微组织 力学性能 结构功能 一体化 硬度测试仪 金相显微镜 不规则形状 Si-Al合金 组织细小
原文传递
Vacuum assisted high-pressure die casting of AZ91D magnesium alloy at different slow shot speeds 被引量:9
12
作者 王青亮 熊守美 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3051-3059,共9页
The effects of vacuum assistance on the microstructure and mechanical properties of high-pressure die cast AZ91 D alloy at different slow shot speeds were evaluated. Plate-shaped castings of AZ91 D alloy were carried ... The effects of vacuum assistance on the microstructure and mechanical properties of high-pressure die cast AZ91 D alloy at different slow shot speeds were evaluated. Plate-shaped castings of AZ91 D alloy were carried out on a TOYO BD-350V5 cold chamber die casting machine incorporated with a self-improved TOYO vacuum system. It was found that the vacuum pressure in the die cavity at the beginning of mold filling increases with the increase of slow shot speed, following a cubic polynomial curve, resulting in a decline in the porosity-reduction ability of vacuum assistance with the increase of slow shot speed. The externally solidified crystal(ESC) contents in conventional and vacuum die castings behave similar against the slow shot speed. The tensile properties of vacuum die castings were strongly influenced by the ESC content at relative low slow shot speeds. With the increase of slow shot speed, the influence of the gas porosity level in vacuum die castings would get prominent. 展开更多
关键词 vacuum die casting slow shot speed POROSITY externally solidified crystals
在线阅读 下载PDF
Effects of shot speed and biscuit thickness on externaly solidified crystals of high-pressure diet cast AM60B magnesium alloy 被引量:5
13
作者 王柏树 熊守美 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期767-772,共6页
Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The inf... Standard mechanical test bars with a diameter of 6.4 mm and a gauge length of 50 mm were processed, and the microstructures of die cast AM60B alloy under different die casting process parameters were observed. The influences of the slow shot speed, the fast shot speed and the biscuit thickness on the externally solidified crystals (ESCs) were investigated. With the increase of the biscuit thickness, the number of the ESCs in the cast samples decreases. Under a low slow shot speed, larg ESCs are found in the cast structure and a high fast shot speed results in more spherical ESCs. The relationships between ESCs and process parameters were also discussed. 展开更多
关键词 AM60B magnesium alloy die casting microstructure externally solidified crystals
在线阅读 下载PDF
Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge 被引量:16
14
作者 Guangyin Zhen Xiaofei Yan +3 位作者 Haiyan Zhou Hua Chen Tiantao Zhao Youcai Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第7期1225-1232,共8页
The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed,... The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl 2 , Na 2 SO 4 and CaSO 4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS 0 obtained with 5% AS and 10% CaSO 4 of AS by weight presented a moisture contents below 50%–60% and a compressive strength of (51.32 ± 2.9) kPa after 5–7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO 4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry- differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO 3 ) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill. 展开更多
关键词 SOLIDIFICATION/STABILIZATION solidifier pozzolanic activity leaching test sanitary landfill
原文传递
Effect of multi-step slow shot speed on microstructure of vacuum die cast AZ91D magnesium alloy 被引量:3
15
作者 王青亮 熊守美 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期375-380,共6页
Two multi-step (two-step and three-step) slow shot speeds were used in the vacuum die casting process of AZ91D magnesium alloy. The vacuum pressure variation in the die cavity before mold filling was monitored by us... Two multi-step (two-step and three-step) slow shot speeds were used in the vacuum die casting process of AZ91D magnesium alloy. The vacuum pressure variation in the die cavity before mold filling was monitored by using a pressure sensor. The microstructures of the produced castings were analyzed with optical microscope and image analysis software. The experimental results demonstrate that, the vacuum pressure in the die cavity at the beginning of mold filling is significantly reduced by using three-step slow shot speed, resulting in a low gas porosity level in the produced castings. At an appropriate multi-step slow shot speed, the dwell time of the liquid metal in the shot sleeve before mold filling can be reduced and the flow of the liquid metal in the shot sleeve at the later stage of the slow shot process can be restrained, which cause a low externally solidified crystal content in the produced castings. 展开更多
关键词 magnesium alloy vacuum die casting slow shot speed gas porosity externally solidified crystal
在线阅读 下载PDF
AgNi15 composite particles prepared by ultrasonic arc spray atomization method
16
作者 谢建斌 温春明 +2 位作者 秦国义 许思勇 郭锦新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3556-3561,共6页
Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 partic... Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 μm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%?0.36% (mole fraction). 展开更多
关键词 AgNi15 composite particle ultrasonic arc spray atomization rapidly solidified structure metastable solution extension
在线阅读 下载PDF
Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field 被引量:17
17
作者 汪彬 杨院生 孙明礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1685-1690,共6页
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pu... The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms. 展开更多
关键词 AZ31 magnesium alloy grain refinement pulsed magnetic field solidified microstructure
在线阅读 下载PDF
Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine 被引量:10
18
作者 Wei-Qing Huang Xiao-Guang Yang Shao-Lin Li 《Rare Metals》 SCIE EI CAS CSCD 2019年第2期157-164,共8页
Turbine blades of gas turbine engines usually suffer from severe operational conditions characterized by high temperature and stress. Severe operational conditions during service cause microstructural changes in turbi... Turbine blades of gas turbine engines usually suffer from severe operational conditions characterized by high temperature and stress. Severe operational conditions during service cause microstructural changes in turbine blades and degrade their mechanical properties. In this study, service-induced microstructural damages in serviced turbine blades manufactured from a directionally solidified superalloy were evaluated. The observed microstructural damage of the turbine blade mainly involves the coarsening and rafting of γ' precipitates. The leading edge of 60% height of the turbine blades undergone most severe microstructural damage with significant microstructural evolution at this area. Microstructural damage affects the mechanical properties such as Vickers hardness, that is,Vickers hardness decreases as the equivalent diameter decreases. Microstructural damage shows great positiondependent feature as service temperature and radial stress on blade changes. With the aid of energy-dispersive spectrometer(EDS) analysis on carbide, the transformation of carbide does not exist. In addition, no topological closed-packed phase exists in the turbine blade. 展开更多
关键词 Service-induced MICROSTRUCTURAL DAMAGE Directionally SOLIDIFIED TURBINE blade: Aircraft ENGINE
原文传递
Microstructure and Properties of Cu-Cr-Zr Alloy after Rapidly Solidified Aging and Solid Solution Aging 被引量:14
19
作者 Ping LIU Juanhua SU +1 位作者 Qiming DONG Hejun LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期475-478,共4页
The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rap... The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary. 展开更多
关键词 Cu-Cr-Zr alloy PROPERTIES Solid solution aging Rapidly solidified aging
在线阅读 下载PDF
Microstructure and compression deformation behavior in the quasicrystalreinforced Mg-8Zn-1Y alloy solidified under super-high pressure 被引量:10
20
作者 董允 林小娉 +4 位作者 徐瑞 郑润国 樊志斌 刘士俊 王哲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第11期1048-1055,共8页
The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression... The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression deformation behavior at room-temperature was studied. The results showed that the microstructure of Mg-8Zn-1Y alloy solidified under ambient pressure and super-high pressure was both mainly composed of ■-Mg and quasicrystal I-Mg3Zn6 Y. Solidification under super-high pressure contributed to refining solidified microstructure and changing morphology of the intergranular second phase. The morphology of intergranular second phase(quasicrystal I-Mg3Zn6Y) was transformed from continuous network(ambient pressure) to long island(high pressure) and finally to granular(super-high pressure) with the increase in pressure. The compressive strength, yield strength and rupture strain of the samples solidified under ambient pressure were significantly improved from 262.6 MPa, 244.4 MPa and 13.3% to 437.3 MPa, 368.9 MPa and 24.7% under the pressure of 6 GPa, respectively. Under ambient pressure, cleavage plane on compressive fracture was large and smooth. When it was solidified under the pressure ranging from 4 to 6 GPa, cleavage plane on compressive fracture was small and coarse. In addition, dimple, tear ridge and lobate patterns existed. 展开更多
关键词 Mg-8Zn-1Y alloy super-high solidification solidified microstructure room-temperature compression deformation compressive property rare earths
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部