A novel Ni-based superalloy GH4151,with a γ′ volume fraction of about 55%and a service temperature capability up to 8oo oC,was investigated.Due to the different cooling conditions of various regions during the solid...A novel Ni-based superalloy GH4151,with a γ′ volume fraction of about 55%and a service temperature capability up to 8oo oC,was investigated.Due to the different cooling conditions of various regions during the solidification of ingots,significant cooling rate variations may lead to the occurrence of hot cracking.Conventional scanning laser microscope was utilised to investigate the solidification process and phase precipitation behaviour of the GH4151 under wide range cooling rates.The characteristics of L→γ transformation were analysed,and the growth rates of at each stage were calculated.The segregation behaviour was predicted using the Scheil equation,and the predicted results match well with the experimental results.The sensitivity coefficient for hot cracking was modified,and cracking sensitivity coefficient values for the alloy under different cooling rates were computed,revealing that the alloy is most susceptible to hot cracking at 10℃/min cooling rate.Therefore,controlling the cooling rate can reduce the possibility of hot cracking in ingot.展开更多
Microstructure evolution and solidification behaviour of ZrB_(2)-SiC composite ceramics fabricated by laser surface zone-melting were investigated.Microstructure coarsening at high scanning speed and mi-crostructure r...Microstructure evolution and solidification behaviour of ZrB_(2)-SiC composite ceramics fabricated by laser surface zone-melting were investigated.Microstructure coarsening at high scanning speed and mi-crostructure refining after turning off the laser was observed due to the changes in the solidification rate.The solidification behaviour from bottom to top of the molten pool was studied,where there are some coarsen eutectic bands caused by the secondary heating of the melting pool on the solidified eu-tectic zone in the molten pool.The deviation of melt composition from the eutectic ratio due to the volatilization of SiC can form a coarse primary ZrB_(2) phase among fine eutectic structure(single-phase instability),and the constitutional supercooling due to the accumulation of impurity elements can form coarse eutectic dendrites among fine eutectic structure(two-phase instability).Both single-phase insta-bility and two-phase instability are adverse to the mechanical properties,which should be prevented by adjusting the composition of raw materials and the solidification process.展开更多
The inherent drawbacks of selective laser melting technique including serious micro-pore and element microsegregation problems destroy the mechanical property of the component.To overcome this problem,a new approach,c...The inherent drawbacks of selective laser melting technique including serious micro-pore and element microsegregation problems destroy the mechanical property of the component.To overcome this problem,a new approach,circular beam oscillation,was successfully applied in the SLMed Inconel 718 samples including single tracks,thin walls and cuboid samples.On one hand,circular beam oscillation reduces the micro-pores in molten pools and cuboid samples,increasing the relative density of the cuboid sample to 99.95%.On the other hand,circular beam oscillation suppresses the element microsegregation,reducing the formation of Laves phases in SLMed Inconel 718 samples.Moreover,circular beam oscillation enhances the<001>texture of thin walls and the<101>texture of cuboid samples.The improvement of formability and microstructure of the SLMed samples with oscillation is closely related to cooling rate,thermal gradient and stirring effect during the solidification process.Therefore,circular beam oscillation shows the possibility to overcome the key bottlenecks of the traditional SLM technology and to realize a further industrial application of SLM technology.展开更多
Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inher...Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inherent heterogeneous nuclei. The recalcscence phenomenon and its dependence on undercooling and on crystal nuclcation and growth, as well as its relationship to solidification microstructures are studied. The crystalli/ation fraction during recalcsccnce is also calculated. Experiments reveal that recalcscence degree increases with undercooling when the latter is below a certain critical value∧Te, but it decreases as undercooling increases above A 7'( (under present conditions∧Te= 245K, i. c. 0.17TE). The greater the recalescencc degree, the larger the proportion of anomalous eutectic in solidified structures. It is inferred that anomalous eutectic is the product of rapid solidification while lamellar eutectic forms at much slower nuclcation rate and growth velocity.展开更多
基金supported by the National Science and Technology Major Project(J2019-VI-0006-0120)National Natural Science Foundation of China(52074092).
文摘A novel Ni-based superalloy GH4151,with a γ′ volume fraction of about 55%and a service temperature capability up to 8oo oC,was investigated.Due to the different cooling conditions of various regions during the solidification of ingots,significant cooling rate variations may lead to the occurrence of hot cracking.Conventional scanning laser microscope was utilised to investigate the solidification process and phase precipitation behaviour of the GH4151 under wide range cooling rates.The characteristics of L→γ transformation were analysed,and the growth rates of at each stage were calculated.The segregation behaviour was predicted using the Scheil equation,and the predicted results match well with the experimental results.The sensitivity coefficient for hot cracking was modified,and cracking sensitivity coefficient values for the alloy under different cooling rates were computed,revealing that the alloy is most susceptible to hot cracking at 10℃/min cooling rate.Therefore,controlling the cooling rate can reduce the possibility of hot cracking in ingot.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+5 种基金the TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)the Aeronautical Science Foundation of China(No.20220042053001)the Science and Technology Innovation Team Plan of ShaanXi Province(No.2021TD-17)the Thousands Person Plan of Jiangxi Province(No.JXSQ2020102131)the Xi’an Science and Technology Program(No.21ZCZZHXJS-QCY6-0005)the Fundamental Research Funds for the Central Universities(Nos.D5000230348 and D5000220057).
文摘Microstructure evolution and solidification behaviour of ZrB_(2)-SiC composite ceramics fabricated by laser surface zone-melting were investigated.Microstructure coarsening at high scanning speed and mi-crostructure refining after turning off the laser was observed due to the changes in the solidification rate.The solidification behaviour from bottom to top of the molten pool was studied,where there are some coarsen eutectic bands caused by the secondary heating of the melting pool on the solidified eu-tectic zone in the molten pool.The deviation of melt composition from the eutectic ratio due to the volatilization of SiC can form a coarse primary ZrB_(2) phase among fine eutectic structure(single-phase instability),and the constitutional supercooling due to the accumulation of impurity elements can form coarse eutectic dendrites among fine eutectic structure(two-phase instability).Both single-phase insta-bility and two-phase instability are adverse to the mechanical properties,which should be prevented by adjusting the composition of raw materials and the solidification process.
基金financially supported by the Pre-research Fund Project of Ministry of Equipment and Development of China though Program(No.61409230301)the Fundamental Research Funds for the Central Universities through Program(Nos.2019kfy XMPY005 and 2019kfy XKJC042)。
文摘The inherent drawbacks of selective laser melting technique including serious micro-pore and element microsegregation problems destroy the mechanical property of the component.To overcome this problem,a new approach,circular beam oscillation,was successfully applied in the SLMed Inconel 718 samples including single tracks,thin walls and cuboid samples.On one hand,circular beam oscillation reduces the micro-pores in molten pools and cuboid samples,increasing the relative density of the cuboid sample to 99.95%.On the other hand,circular beam oscillation suppresses the element microsegregation,reducing the formation of Laves phases in SLMed Inconel 718 samples.Moreover,circular beam oscillation enhances the<001>texture of thin walls and the<101>texture of cuboid samples.The improvement of formability and microstructure of the SLMed samples with oscillation is closely related to cooling rate,thermal gradient and stirring effect during the solidification process.Therefore,circular beam oscillation shows the possibility to overcome the key bottlenecks of the traditional SLM technology and to realize a further industrial application of SLM technology.
文摘Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inherent heterogeneous nuclei. The recalcscence phenomenon and its dependence on undercooling and on crystal nuclcation and growth, as well as its relationship to solidification microstructures are studied. The crystalli/ation fraction during recalcsccnce is also calculated. Experiments reveal that recalcscence degree increases with undercooling when the latter is below a certain critical value∧Te, but it decreases as undercooling increases above A 7'( (under present conditions∧Te= 245K, i. c. 0.17TE). The greater the recalescencc degree, the larger the proportion of anomalous eutectic in solidified structures. It is inferred that anomalous eutectic is the product of rapid solidification while lamellar eutectic forms at much slower nuclcation rate and growth velocity.