Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures wer...Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.展开更多
As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range,...As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.展开更多
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l...This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.展开更多
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag...Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.展开更多
Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transf...Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.展开更多
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit...High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical dur...Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.展开更多
The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batterie...The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.展开更多
Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials ...Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.展开更多
Organic structure directingagents(OSDAs),suchas tetrapropylammonium(TPA)cations,serve as crucial templates for the formation of zeolite frameworks.These organic molecules interact with inorganic species,guiding the as...Organic structure directingagents(OSDAs),suchas tetrapropylammonium(TPA)cations,serve as crucial templates for the formation of zeolite frameworks.These organic molecules interact with inorganic species,guiding the assembly of the zeolite structure.In this study,we inves-tigate the complex interplay between boron species and TPA cations during the crystallization of[B,Al]-ZSM-5 zeolites.Two-dimensional(2D)11B-{1H}cross-polarization heteronuclear correlation(CP-HECTOR)NMRexperiments elucidate distinct interactions between two boron species,B(IV)-1 and B(IV)-2,and the propyl chain of the TPAs.Amorphous B(IV)-1 species exhibit a strong preference for proximity to the nitrogen cation center of the OSDAs,while framework B(IV)-2 species engage with components situated at greater distances from the cation center.Moreover,13C-{11B}symmetry-based resonance-echo saturation-pulse double-resonance(S-RESPDOR)experiments revealed that framework boron species preferentially occupy the straight channels of the MFI structure,as evidenced by their interaction with specificmethyl groups on the TPAmolecules.This observation provides valuable insights into the crystallization mechanism of boron-based zeolites,suggesting that the conformation and orientation of the OSDA molecules play a critical role in determining the location of boron atoms within the zeolite framework.展开更多
Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using convent...Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches.展开更多
Garnet lithium lanthanum zirconium oxide(Li_(7)La_(3)Zr_(2)O_(12),LLZO)is a benchmark solid-state electrolyte(SSE)material receiving considerable attention owing to its high conductivity and chemical stability against...Garnet lithium lanthanum zirconium oxide(Li_(7)La_(3)Zr_(2)O_(12),LLZO)is a benchmark solid-state electrolyte(SSE)material receiving considerable attention owing to its high conductivity and chemical stability against Li metal.Although its electro-chemo-mechanical failure mechanisms have been much investigated,the equivocal roles of grain boundary strength and grain size of LLZO remain under-explored,hindering further performance improvements.Here we decoupled the effects of grain size and grain boundary strength of polycrystalline LLZO via the combination of electrochemical kinetics and the cohesive zone model.We discovered that the disintegration of LLZO is initiated by the accumulation of local displacements,which strongly relates to the changes in both grain size and grain boundary strength.However,variations in grain boundary strength affect the diffusion and propagation pathways of damage,while the failure of LLZO is determined by the grain size.Large LLZO grains facilitate transgranular damage under low grain boundary strength,which can alter local chemo-mechanics within the bulk of LLZO,leading to more extensive damage propagation.The results showcase the structure optimization pathways by preferentially controlling the growth of lithium dendrites at grain boundaries and their penetration in garnet-type SSE.展开更多
All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitr...All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitrile rubber(NBR)is primarily used as a binder due to its moderate solubility in non-polar solvents,which exhibites minimal chemical reactivity with sulfide SEs.However,the NBR binder,composed of butadiene and acrylonitrile units with differing polarities,exhibits different chemical compatibility depending on the subtle differences in polarity of solvents.Herein,we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs.Anisole is found to activate the acrylonitrile units,inducing an elongated polymer chain configuration in the binder solution,which gives an opportunity to strongly interact with the solid components of the electrode and the current collector.Consequently,selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode,allowing ASSBs to operate at a lower stacking pressure of 16 MPa.This approach achieves an initial capacity of 480 mAh g^(-1),significantly higher than the 390 mAh g^(-1)achieved with the NBR/toluene binder that has less chemical compatibility.Furthermore,internal stress variations during battery operation are monitored,revealing that the enhanced mechanical properties,achieved through acrylonitrile activation,effectively mitigate internal stress in the graphite/silicon composite anode.展开更多
The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries.This work monitored the electrochemical evolution of ...The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries.This work monitored the electrochemical evolution of a hydrated monoclinic sodium manganese hexacyanoferrate cathode by solid-state nuclear magnetic resonance(NMR).For the first time,we established a correlation between the chemical shifts of ^(23)Na NMR signals and the presence or absence of lattice water within this cathode.Through this method,we verified the electrochemical dehydration process that coincides with the merging of two redox platforms and a phase transformation in the initial cycles.Furthermore,we discovered that the lattice water is completely removed after several-day cell rest following a single activation cycle.展开更多
Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potenti...Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potential high energy density.However,Si suffers from poor electrical conductivity and huge volume change and particles fracture during lithiaiotn and delithiation,which induces low practical energy density.In addition,the SSBs are often operated at high temperature due to the poor physical contact and huge resistance between Si and solid-state electrolyte(SSE).To improve the bulk electronic/ionic conductivity of Si and its interfacial compatibility with SSE,herein,a binder free and self-supporting Si/C film was developed.The monolithic carbon not only enhance the electric conductivity but also release huge stress during lithiation and delithiation.In addition,paired with the flexible and soft poly(vinylidene fluoride)-co-hexafluoropropylene(PVDF-HFP)and Li_(1.3)A_(l0.3)Ti_(1.7)(PO_(4))_(3)(LATP)solid-state electrolyte,a LiF-rich and electrochemical stable solid-electrolyte interphase(SEI)layer is in-situ engineered.The fast bulk and interfacial ionic transportation as well as the mechanical integrity of MSi enable high performance SSBs at room temperature.As a result,high specific capacity of 2137 m Ah/g with an initial Coulombic efficiency of 83.2%is obtained at a rate of 0.5 A/g.Even at a high rate of 3 A/g,the specific capacity is1793 m Ah/g.At a rate of 1 A/g,the Si/C anode delivers a long cycling performance over 500 cycles while maintains a capacity of 1135 mAh/g.This work provides a new strategy that combines charge transfer kinetics and interfacial chemistry design toward high energy density Si-based SSBs.展开更多
As a highly reactive reaction intermediate,surface gallium hydride(Ga–H)has garnered significant attention due to its critical role in various catalytic reactions.However,the detailed experimental characterization of...As a highly reactive reaction intermediate,surface gallium hydride(Ga–H)has garnered significant attention due to its critical role in various catalytic reactions.However,the detailed experimental characterization of this unique species remains challenging.Recently,we have demonstrated that solid-state NMR can be an effective tool for studying surface Ga–H.In this work,we report a comparative solid-state NMR study on H_(2) activation over different Ga_(2)O_(3) polymorphs,specificallyα-,β-andγ-Ga_(2)O_(3).^(1)H solid-state NMR enabled the identification of Ga–H species formed on all the three samples following high-temperature H_(2) treatment.The characteristic ^(1)H NMR signals of Ga–H species are resolved using J-coupling-based double-resonance NMR methods,revealing highly similar lineshapes of Ga–H for all the Ga_(2)O_(3) samples.This suggests potentially similar surface Ga–H configurations among different Ga_(2)O_(3) polymorphs.In addition,the local hydrogen environments on the oxide surfaces are further explored using two-dimensional(2D)^(1)H–^(1)H homonuclear correlation spectra,revealing multiple spatially proximate Ga–H and Ga–H/–OH pairs on different Ga_(2)O_(3) polymorphs.These findings provide insights into the potential mechanism of H_(2) dissociation.Overall,this work offers new perspectives on the local structure of surface Ga–H on Ga_(2)O_(3),and the analytical approach presented here can be further extended to the study of other Ga-based catalysts and other metal hydride species.展开更多
Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely o...Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely on flammable liquid electrolytes as the ion transport medium,pose safety challenges in practical applications.Using solid-state electrolytes instead of liquid electrolytes can effectively improve the safety and electrochemical performance of battery systems,making solid-state sodium-ion batteries as a highly promising option for energy storage.Solid-state electrolytes are categorized into organic and inorganic types.Inorganic solid-state electrolytes have garnered increased interest for their high ionic conductivity,high ion mobility,excellent mechanical properties,and good thermal stability.This review systematically explores the advancements in various inorganic solid-state electrolytes,includingβ-Al_(2)O_(3),sodium superionic conductor,sulfide,halide,complex hydride,and anti-perovskite.The review focuses on material preparation,ionic conductivity,and electrochemical properties.Additionally,it addresses the interface challenges between inorganic solid-state electrolytes and electrode materials,along with effective strategies to improve these interfaces.展开更多
High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high...High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.展开更多
文摘Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.
基金supported by the National Natural Science Foundation of China (11474337, 51472267, 21773303, and 51421002)the Program by Chinese Academy of Sciences (ZDYZ2015-1 and XDB07030100)Austrian-Chinese Cooperative R&D Projects, FFG and Chinese Academy of Sciences (112111KYSB20150002)
文摘As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.
文摘This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.
基金supported by the National Natural Science Foundation of China(Nos.22171102 and 22090044)the National Key R&D Program of China(Nos.2021YFF0500502 and 2023YFA1506304)+2 种基金the Jilin Province Science and Technology Development Plan(No.20230101024JC)the"Medicine+X"crossinnovation team of Bethune Medical Department of Jilin University"Leading the Charge with Open Competition"construction project(No.2022JBGS04)the Jilin University Graduate Training Office(Nos.2021JGZ08 and 2022YJSJIP20).
文摘Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.
基金supported by National Science Fund for Distinguished Young Scholars(Grant No.52325206)National Key Research and Development Program of China(Grant No.2021YFF0500600)+3 种基金National Natural Science Foundation of China(Grant Nos.U2001220 and 52203298)Shenzhen Technical Plan Project(Grant Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008,and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(Grant No.SZPR2023006)Shenzhen Science and Technology Program(Grant No.WDZC20231126160733001).
文摘Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.
基金financially supported by the National Natural Science Foundation of China(Nos.22102212 and 22479067).
文摘High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
基金supported by the 261 Project of MIITthe National Natural Science Foundation of China(Nos.52250010,52201242,U23A20574)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.
基金Financial support from National Key R&D Program(2022YFB2404600)Natural Science Foundation of China(Key Project of 52131306)+1 种基金Project on Carbon Emission Peak and Neutrality of Jiangsu Province(BE2022031-4)the Big Data Computing Center of Southeast University are greatly appreciated.
文摘The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.
基金National Natural Science Foundation of China(22322903,52072061)Natural Science Foundation of Sichuan,China(2023NSFSC1914)Beijing National Laboratory for Condensed Matter Physics(2023BNLCMPKF015)。
文摘Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.
基金supported by the National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),the National Natural Science Foundation of China(Grants 22161132028,22172177,22225205,22372191 and 22372178)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0540000)+2 种基金the International Partnership Program of the Chinese Academy of Sciences(314GJH2022022FN)Natural Science Foundation of Hubei Province(2021CFA021)Hubei International Scientific and Technological Cooperation Program(2024EHA043)and Base(SH2303).
文摘Organic structure directingagents(OSDAs),suchas tetrapropylammonium(TPA)cations,serve as crucial templates for the formation of zeolite frameworks.These organic molecules interact with inorganic species,guiding the assembly of the zeolite structure.In this study,we inves-tigate the complex interplay between boron species and TPA cations during the crystallization of[B,Al]-ZSM-5 zeolites.Two-dimensional(2D)11B-{1H}cross-polarization heteronuclear correlation(CP-HECTOR)NMRexperiments elucidate distinct interactions between two boron species,B(IV)-1 and B(IV)-2,and the propyl chain of the TPAs.Amorphous B(IV)-1 species exhibit a strong preference for proximity to the nitrogen cation center of the OSDAs,while framework B(IV)-2 species engage with components situated at greater distances from the cation center.Moreover,13C-{11B}symmetry-based resonance-echo saturation-pulse double-resonance(S-RESPDOR)experiments revealed that framework boron species preferentially occupy the straight channels of the MFI structure,as evidenced by their interaction with specificmethyl groups on the TPAmolecules.This observation provides valuable insights into the crystallization mechanism of boron-based zeolites,suggesting that the conformation and orientation of the OSDA molecules play a critical role in determining the location of boron atoms within the zeolite framework.
基金supported by the National Natural Science Foundation of China(grant number:22274050)the Shanghai Science and Technology Commission(contract number:23J21900300)the Fundamental Research Funds for the Central Universities.
文摘Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches.
基金the financial support from the National Natural Science Foundation of China(12102328,52104312,22278329)the Qin Chuangyuan Talent Project of Shaanxi Province(2021QCYRC4-43,QCYRCXM-2022-308)the Fundamental Research Funds for the Central Universities,China.
文摘Garnet lithium lanthanum zirconium oxide(Li_(7)La_(3)Zr_(2)O_(12),LLZO)is a benchmark solid-state electrolyte(SSE)material receiving considerable attention owing to its high conductivity and chemical stability against Li metal.Although its electro-chemo-mechanical failure mechanisms have been much investigated,the equivocal roles of grain boundary strength and grain size of LLZO remain under-explored,hindering further performance improvements.Here we decoupled the effects of grain size and grain boundary strength of polycrystalline LLZO via the combination of electrochemical kinetics and the cohesive zone model.We discovered that the disintegration of LLZO is initiated by the accumulation of local displacements,which strongly relates to the changes in both grain size and grain boundary strength.However,variations in grain boundary strength affect the diffusion and propagation pathways of damage,while the failure of LLZO is determined by the grain size.Large LLZO grains facilitate transgranular damage under low grain boundary strength,which can alter local chemo-mechanics within the bulk of LLZO,leading to more extensive damage propagation.The results showcase the structure optimization pathways by preferentially controlling the growth of lithium dendrites at grain boundaries and their penetration in garnet-type SSE.
基金supported by the Technology Innovation Program(00404166,Development of thin-film coating current collector and aqueous binder to enhance the adhesion and conductivity properties on the silicon-rich anode)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea),the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.2710024139)the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No.22-CM-FC-20。
文摘All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitrile rubber(NBR)is primarily used as a binder due to its moderate solubility in non-polar solvents,which exhibites minimal chemical reactivity with sulfide SEs.However,the NBR binder,composed of butadiene and acrylonitrile units with differing polarities,exhibits different chemical compatibility depending on the subtle differences in polarity of solvents.Herein,we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs.Anisole is found to activate the acrylonitrile units,inducing an elongated polymer chain configuration in the binder solution,which gives an opportunity to strongly interact with the solid components of the electrode and the current collector.Consequently,selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode,allowing ASSBs to operate at a lower stacking pressure of 16 MPa.This approach achieves an initial capacity of 480 mAh g^(-1),significantly higher than the 390 mAh g^(-1)achieved with the NBR/toluene binder that has less chemical compatibility.Furthermore,internal stress variations during battery operation are monitored,revealing that the enhanced mechanical properties,achieved through acrylonitrile activation,effectively mitigate internal stress in the graphite/silicon composite anode.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)Scientific and Technological Project of Henan Province(No.222102240081)+1 种基金Science and Technology Planning Project of Anyang City(No.2022C01GX023)the support from Shanghai Synchrotron Radiation Facility(BL14B)for the sXRD experiments.
文摘The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries.This work monitored the electrochemical evolution of a hydrated monoclinic sodium manganese hexacyanoferrate cathode by solid-state nuclear magnetic resonance(NMR).For the first time,we established a correlation between the chemical shifts of ^(23)Na NMR signals and the presence or absence of lattice water within this cathode.Through this method,we verified the electrochemical dehydration process that coincides with the merging of two redox platforms and a phase transformation in the initial cycles.Furthermore,we discovered that the lattice water is completely removed after several-day cell rest following a single activation cycle.
基金financially supported by the Natural Science Foundation of Fujian Province(No.2021J01333)the funding from the Fujian Education Department of China(No.JAT210582)。
文摘Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potential high energy density.However,Si suffers from poor electrical conductivity and huge volume change and particles fracture during lithiaiotn and delithiation,which induces low practical energy density.In addition,the SSBs are often operated at high temperature due to the poor physical contact and huge resistance between Si and solid-state electrolyte(SSE).To improve the bulk electronic/ionic conductivity of Si and its interfacial compatibility with SSE,herein,a binder free and self-supporting Si/C film was developed.The monolithic carbon not only enhance the electric conductivity but also release huge stress during lithiation and delithiation.In addition,paired with the flexible and soft poly(vinylidene fluoride)-co-hexafluoropropylene(PVDF-HFP)and Li_(1.3)A_(l0.3)Ti_(1.7)(PO_(4))_(3)(LATP)solid-state electrolyte,a LiF-rich and electrochemical stable solid-electrolyte interphase(SEI)layer is in-situ engineered.The fast bulk and interfacial ionic transportation as well as the mechanical integrity of MSi enable high performance SSBs at room temperature.As a result,high specific capacity of 2137 m Ah/g with an initial Coulombic efficiency of 83.2%is obtained at a rate of 0.5 A/g.Even at a high rate of 3 A/g,the specific capacity is1793 m Ah/g.At a rate of 1 A/g,the Si/C anode delivers a long cycling performance over 500 cycles while maintains a capacity of 1135 mAh/g.This work provides a new strategy that combines charge transfer kinetics and interfacial chemistry design toward high energy density Si-based SSBs.
基金financially supported by the National Key R&D Program of China(No.2021YFA1502803)the National Natural Science Foundation of China(Nos.22325405,22372160,22432005 and 22321002)Dalian Science and Technology Talent Innovation Program(No.2024RG009).
文摘As a highly reactive reaction intermediate,surface gallium hydride(Ga–H)has garnered significant attention due to its critical role in various catalytic reactions.However,the detailed experimental characterization of this unique species remains challenging.Recently,we have demonstrated that solid-state NMR can be an effective tool for studying surface Ga–H.In this work,we report a comparative solid-state NMR study on H_(2) activation over different Ga_(2)O_(3) polymorphs,specificallyα-,β-andγ-Ga_(2)O_(3).^(1)H solid-state NMR enabled the identification of Ga–H species formed on all the three samples following high-temperature H_(2) treatment.The characteristic ^(1)H NMR signals of Ga–H species are resolved using J-coupling-based double-resonance NMR methods,revealing highly similar lineshapes of Ga–H for all the Ga_(2)O_(3) samples.This suggests potentially similar surface Ga–H configurations among different Ga_(2)O_(3) polymorphs.In addition,the local hydrogen environments on the oxide surfaces are further explored using two-dimensional(2D)^(1)H–^(1)H homonuclear correlation spectra,revealing multiple spatially proximate Ga–H and Ga–H/–OH pairs on different Ga_(2)O_(3) polymorphs.These findings provide insights into the potential mechanism of H_(2) dissociation.Overall,this work offers new perspectives on the local structure of surface Ga–H on Ga_(2)O_(3),and the analytical approach presented here can be further extended to the study of other Ga-based catalysts and other metal hydride species.
基金supported by the National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+1 种基金China Postdoctoral Science Foundation(Nos.2022M722594 and 2024T171170)Basic and Applied Basic Research Foundation of Guangdong(No.2024A1515011516).
文摘Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely on flammable liquid electrolytes as the ion transport medium,pose safety challenges in practical applications.Using solid-state electrolytes instead of liquid electrolytes can effectively improve the safety and electrochemical performance of battery systems,making solid-state sodium-ion batteries as a highly promising option for energy storage.Solid-state electrolytes are categorized into organic and inorganic types.Inorganic solid-state electrolytes have garnered increased interest for their high ionic conductivity,high ion mobility,excellent mechanical properties,and good thermal stability.This review systematically explores the advancements in various inorganic solid-state electrolytes,includingβ-Al_(2)O_(3),sodium superionic conductor,sulfide,halide,complex hydride,and anti-perovskite.The review focuses on material preparation,ionic conductivity,and electrochemical properties.Additionally,it addresses the interface challenges between inorganic solid-state electrolytes and electrode materials,along with effective strategies to improve these interfaces.
基金supported by the A*STAR MTC Programmatic Project(No.M23L9b0052)the Indonesia-NTU Singapore Institute of Research for Sustainability and Innovation(INSPIRASI)(No.6635/E3/KL.02.02/2023)+2 种基金the Singapore NRF Singapore-China Flagship Program(No.023740-00001)the National Natural Science Foundation of China(Nos.11975043 and 11475300)the China Scholarship Council(No.202306460087)。
文摘High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.