Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with...Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.展开更多
Developing an efficient photocatalyst is the key to realize the practical application of photocatalysis.The S-scheme heterojunction has great potential in photocatalysis due to its unique charge-carrier migration path...Developing an efficient photocatalyst is the key to realize the practical application of photocatalysis.The S-scheme heterojunction has great potential in photocatalysis due to its unique charge-carrier migration pathway,effective light absorption and high redox capacity.However,further enhancing the built-in electric field of the S-scheme,accelerating carrier separation,and achieving higher photocatalytic performance remain unresolved challenges.Herein,based on the continuously adjustable band structure of continuous solid-solution,a novel 0D/2D all solid-solution S-scheme heterojunction with adjustable internal electric field was designed and fabricated by employing a solid-solution of ZnxCd_(1–x)S and Bi_(2)MoyW_(1–y)O_(6)respectively as reduction and oxidation semiconductors.The synergistic optimization of effective light absorption,fast photogenerated carrier separation,and high redox potential leads can be tuned to promote photocatalytic activity.Under visible light,the S-scheme system constructed by Zn_(0.4)Cd_(0.6)S quantum dot(QDs)and Bi_(2)Mo_(0.2)W_(0.8)O_(6)monolayer exhibits a high rate for photocatalytic degradation C_(2)H_(4)(150.6×10^(–3)min^(–1)),which is 16.5 times higher than that of pure Zn_(0.4)Cd_(0.6)S(9.1×10^(–3)min^(–1))and 53.8 times higher than pure Bi_(2)Mo_(0.2)W_(0.8)O_(6)(2.8×10^(–3)min^(–1)).Due to the unique charge-carrier migration pathway,photo-corrosion of Zn_(x)Cd_(1–x)S is further inhibited simultaneously.In-situ irradiation X-ray photoelectron spectroscopy,photoluminescence spectroscopy,time-resolved photoluminescence,transient absorption spectroscopy and electron paramagnetic resonance provide compelling evidence for interfacial charge transfer via S-scheme pathways,while in-situ diffuse reflectance infrared Fourier transform spectroscopy identifies the reaction pathway for C_(2)H_(4)degradation.This novel S-scheme photocatalysts demonstrates excellent performance and potential for the practical application of the fruits and vegetables preservation at room temperatures.展开更多
Continuously improving the mechanical properties of ultra-high-temperature ceramics(UHTCs)is a key requirement for their future applications.However,the mechanical properties of conventional UHTCs,HfB_(2) and ZrB_(2),...Continuously improving the mechanical properties of ultra-high-temperature ceramics(UHTCs)is a key requirement for their future applications.However,the mechanical properties of conventional UHTCs,HfB_(2) and ZrB_(2),remain unsatisfactory among transition metal light-element(TMLE)compounds.TiB_(2) has superior mechanical properties compared to both HfB_(2) and ZrB_(2),but suffers from inherent brittleness and limited oxidation resistance.In this work,low-content solidsolution strengthening was used to fabricate dense samples of Tix(Hf/Zr)_(1-x)B_(2)(THZ)under high pressure and high temperature(HPHT).Compared to pure TiB_(2),Ti_(0.94)(Hf/Zr)0.06B_(2) exhibits a significant 38.8%increase in oxidation resistance temperature(950℃),while Ti_(0.91)(Hf/Zr)_(0.09)B_(2) shows a notable 28%enhancement in fracture toughness(5.8 MPa·m^(1/2)).The synergistic effect of a dual-atom solid-solution results in local internal stress and anomalous lattice contraction.This lattice contraction helps resist oxygen invasion,thereby elevating the oxidation resistance threshold.Additionally,the internal stress induces crack deflection within individual grains,enhancing toughness through energy dissipation.This work provides a new strategy for fabricating robust UHTCs within TMLE systems,demonstrating significant potential for future high-temperature applications.展开更多
The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explo...The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explore a candidate with large SCs,which can stably operate in the negative potential region mean-while.For this propose,we design and fabricate solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals(NCs),which exhibit competitive SCs and electrochemical stability within the potential range from-0.9 V to 0.0 V in the aqueous KOH electrolyte.The incorporation of Cu enhances the electrochemical utilization of RuO_(2),reaction kinetics,electronic conductivity,and hydrogen evolution overpotentials,which are all highly dependent upon the added contents of Cu species.The optimized Ru_(0.8)Cu_(0.2)O_(2)(RuCu82)electrode of a high mass loading of 5 mg cm^(-2) reveals the best electrochemical capacitances in terms of reversible SCs and capacitance degradation at room temperature and-20℃.Furthermore,the reversible K^(+)-(de)intercalation induced pseudocapacitance is proposed for electrochemical charge storage process of RuCu82.In particu-lar,remarkable specific energy of 59.1 Wh kg-1 at 400 W kg-1 and excellent cycling stability are achieved in the assembled NiCoO_(2)//RuCu82 AHCs.Our contribution here presents a new promising negative elec-trode platform with high SCs and electrochemical stability for next-generation AHCs.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties...A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties of this steel were inves-tigated. The increase in solid-solution temperature first increased and then decreased the values of ultimate strength (UTS) and Charpy U-notch (CUN) energy. The increase in the UTS and CUN values was caused by the dissolution of the primary carbides M6C and MC, while the decrease in both strength and toughness was due to the increase in the prior austenite grain size. Samples that were solid-solution treated at 1000℃ exhibited an optimal combination of strength and toughness with a UTS of 2020MPa, yield strength of 1780MPa, and CUN energy of 68J, as well as a correlative fracture toughness KIC value of about 105MPam1/2.展开更多
The effects of Ni content(0–2.1wt%)on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated,and the corresponding mechanisms of influence were analyzed.The results show that the amount...The effects of Ni content(0–2.1wt%)on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated,and the corresponding mechanisms of influence were analyzed.The results show that the amount of precipitated phase increases in the cast alloys with increasing Ni content.When the Ni content is 0.45wt%or 0.98wt%,needle-like Be_(21)Ni_5 phases form in the grains and are mainly distributed in the interdendritic regions.When the Ni content is 1.5wt%or greater,a large number of needle-like precipitates form in the grains and chain-like Be_(21)Ni_5 and Be Ni precipitates form along the grain boundaries.The addition of Ni can substantially refine the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.The hindering effects of both the dissolution of Ni into the matrix and the formation of Be–Ni precipitates on grain-boundary migration are mainly responsible for refining the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.Higher Ni contents result in finer microstructures;however,given the precipitation characteristics of Be–Ni phases and their dissolution into the matrix during the solid-solution treatment,the upper limit of the Ni content is 1.5wt%–2.1wt%.展开更多
MCoCrFeNiTix (M = Cu, Al; x: molar ratio, x = 0, 0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy. By the component substitution orAl for Cu, the microstructure c...MCoCrFeNiTix (M = Cu, Al; x: molar ratio, x = 0, 0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy. By the component substitution orAl for Cu, the microstructure changes from the face-centered cubic solid solution of original CuCoCrFeNiTix alloys to the body-centered cubic solid solution of AlCoCrFeNiTix alloys. Compared with original CuCoCrFeNiTix alloys, AlCoCrFeNiTix alloys keep the similar good ductility and simultaneously possess a much higher compressive strength, which are even superior to most of the reported high-strength alloys like bulk metallic glasses.展开更多
The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLT...The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.展开更多
Sodium-ion batteries(SIBs)are proved as one of the most acceptable candidates for replacing lithium-ion batteries in some fields by virtue of a similar“rocking chair”mechanism and the abundance of sodium.The voltage...Sodium-ion batteries(SIBs)are proved as one of the most acceptable candidates for replacing lithium-ion batteries in some fields by virtue of a similar“rocking chair”mechanism and the abundance of sodium.The voltage,rate performance,and energy density of these batteries are mainly determined by the cath-odes.Hence,a Li-Ni-Co co-substituted P2-Na_(0.67)[Li_(0.1)(Mn_(0.7)Ni_(0.2)Co_(0.1))_(0.9)]O_(2)(NLMNC)with ribbon super-structure is prepared with the aim of multi-ion synergistic modification.Owing to the addition of Ni and Co,the Jahn-Teller distortion of Mn can be suppressed corresponding with the improved structural stability,and a little bit of oxygen redox activities is triggered.When with the substitution of 10%Li,the X-ray diffraction(XRD)peaks of NLMNC show the ribbon superstructure at about 21°and 22°.The smooth charge/discharge profiles of the NLMNC cathode exhibit the solid-solution reaction.In addition,the platform at high voltage disappears corresponding with the existing oxygen redox activities being suppressed which may be related to the ribbon superstructure and the promotion of the Ni redox.Such NLMNC cathode can deliver a reversible discharge capacity of 123.5 mA h g^(-1)at 10 mA g^(-1).Even if the current density increases to 500 mA g^(-1),a reversible discharge capacity of 112.8 mA h g^(-1)still can be ob-tained.The distinguished cycling stability is related to the reversible migration of Li+between the metal oxide layer and the interlayer and low volume change during cycling.It is also needing to be mentioned that the capacity retention of NLMNC cathode is about 94.4%(based on the highest discharge capacity)after 100 cycles.This work presents an effective route to develop high-performance cathodes for SIBs.展开更多
The effect of solid-solution treatment on corrosion and electrochemical mechanisms of Mg-15Y alloy in 3.5 wt.% NaCl solution was investigated by electrochemical testing, immersion testing and SEM observation. The resu...The effect of solid-solution treatment on corrosion and electrochemical mechanisms of Mg-15Y alloy in 3.5 wt.% NaCl solution was investigated by electrochemical testing, immersion testing and SEM observation. The results indicated that the corrosion resistance of Mg-15Y sample gradually deteriorated with immersion time increasing, which was consistent with the observation of corrosion morphologies. The solid-solution treatment decreased the amounts of second phase Mg24Ys. The Ecor~ and corrosion rate of as-cast samples were both lower than those of solid solution-treated samples, and both increased with increment of solid solution-treated time. The corrosion mechanism was proposed for the galvanic, pitting and filiform corrosion which varied with the immersion time and solid-solution treatment.展开更多
The role of Nd solid-solution and grain-boundary segregation in binary NiAl alloy was studied based on microhardness and compressive macrostrain. X-ray and Auger spectra studies indicate that Nd not only is soluble in...The role of Nd solid-solution and grain-boundary segregation in binary NiAl alloy was studied based on microhardness and compressive macrostrain. X-ray and Auger spectra studies indicate that Nd not only is soluble in grain interiors, but also segregates to the grain boundaries. Nd solid-solution induces an increase of the microhardness from 269 to 290 HV in grain interiors and segregation results in an enhancement of hardness from 252 to 342 HV on grain boundaries. Thus, the cohesion of grain boundaries is enhanced by Nd segregation, which make the alloy doped with 0.05 wt pct Nd exhibit more compressive microstrain, i.e. the higher the compressive ductility at room temperature, the better the final surface condition at elevated temperature. Finally, a discussion was made on the reason that Nd strengthens the grain boundaries in NiAl intermetallic alloy.展开更多
High-and medium-entropy alloys(HEAs and MEAs)possess high solid-solution strength.Numerous investigations have been conducted on its impact on yield strength,however,there are limited reports regarding the relation be...High-and medium-entropy alloys(HEAs and MEAs)possess high solid-solution strength.Numerous investigations have been conducted on its impact on yield strength,however,there are limited reports regarding the relation between solid-solution strengthening and strain-hardening rate.In addition,no attempt has been made to account for the dislocation-mediated plasticity;most works focused on twinning-or transformation-induced plasticity(TWIP or TRIP).In this work we reveal the role of solidsolution strengthening on the strain-hardening rate via systematically investigating evolutions of deformation structures by controlling the Cr/V ratio in prototypical V_(1-x)Cr_(x)CoNi alloys.Comparing the TWIP of CrCoNi with the dislocation slip of V_(0.4)Cr_(0.6)CoNi,the hardening rate of CrCoNi was superior to slip-band refinements of V_(0.4)Cr_(0.6)CoNi due to the dynamic Hall-Petch effect.However,as V content increased further to V_(0.7)Cr_(0.3)CoNi and VCoNi,their rate of slip-band refinement in V_(0.7)Cr_(0.3)CoNi and VCoNi with high solid-solution strength surpassed that of CrCoNi.Although it is generally accepted in conventional alloys that deformation twinning results in a higher strain-hardening rate than dislocation-mediated plasticity,we observed that the latter can be predominant in the former under an activated huge solid-solution strengthening effect.The high solid-solution strength lowered the cross-slip activation and consequently retarded the dislocation rearrangement rate,i.e.,the dynamic recovery.This delay in the hardening rate decrease,therefore,increased the strain-hardening rate,results in an overall higher strain-hardening rate of V-rich alloys.展开更多
Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were a...Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were analyzed, and the results showed that, the austenite grain size increased with the increase of heating temperature, When the heating temperature reached 1050°C and 1250°C, the austenite grains appeared the obvious coarsening process twice. TiC particles dissolved gradually as the heating temperature increased. When the heating temperature rose to 1100°C, TiC particles disappeared basically, When the heating temperature rose to 1250°C, TiN particles began to be dissolved and grow up.展开更多
The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at consta...The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.展开更多
Solid-solution strengthened superalloys are widely used because they possess excellent levels of high temperature strength and environmental resistance in combination with ease of fabrication.This latter factor is of ...Solid-solution strengthened superalloys are widely used because they possess excellent levels of high temperature strength and environmental resistance in combination with ease of fabrication.This latter factor is of utmost importance since it is a primary economic determinant.From a metal producer's point of view,it determines the viable range of product forms that can be offered to the marketplace.From a user's point of view,it determines the viable range of manufacturing processes that can be used to make the final product.For both the producer and user,an alloy's heat treatment and property response is a central issue for defining fabricability.The areas of interest are typically quite fundamental and include such phenomena as recrystallization and grain growth,critical strain effects,relief of residual stresses,and cooling rate effects.In heat resisting alloys,these phenomena often involve subtle complexities due to the precipitation of carbides and,in some cases,the precipitation of intermetallic phases. This paper will deal with these complexities,providing relevant data and concrete examples wherever possible.The information presented should enable the proper selection of heat treatment practices for solid-solution strengthened superalloys.展开更多
Hydrogen energy carrier produced by water electrolysis in alkaline electrolytes is rather meaningful and significant for global sustainability imperatives,while the highpH condition usually leads to a poor reversibili...Hydrogen energy carrier produced by water electrolysis in alkaline electrolytes is rather meaningful and significant for global sustainability imperatives,while the highpH condition usually leads to a poor reversibility of proton adsorption and desorption that significantly determines the hydrogen-generation activity in hydrogen evolution reaction(HER)process.Herein,we demonstrate a remarkable Ru-Mo solid-solution nanocrystal catalyst in alkaline HER process by a very simple but feasible pyrolysis and alkali leaching strategy.Benefiting from the pinning effect and local chemical-and electronic-structure regulations of Mo solute atoms,an ultra-low overpotential(17.3 mV)and an exceptional stability(>100 h)at the typical current density of 10 mA·cm^(−2)are achieved on the ultrasmall Ru-Mo solid-solution nanocrystal catalyst in 1.0 M KOH electrolyte.Density function theory(DFT)calculations gain an insight into the synergistic effect of neighboring Ru and Mo sites in alkaline HER process,where Mo solute atoms are beneficial for the adsorption and activation of water molecules for proton generation and accumulation due to their rich outermost 4d vacant orbitals,while the energy-favorable Ru sites are responsible for the fast deprotonation kinetics of hydrogen intermediates.Our work may provide an interesting route for the development of efficient and stable solid-solution alloy nanocrystals towards alkaline water electrolysis and beyond.展开更多
Striking effects are expected in solid-solution alloying,which offers enormous possibilities for various applications,especially in industrial catalysis.However,phase diagrams have revealed that a wide range of metall...Striking effects are expected in solid-solution alloying,which offers enormous possibilities for various applications,especially in industrial catalysis.However,phase diagrams have revealed that a wide range of metallic elements are immiscible with each other even above their melting points.Achieving such unknown alloying between different immiscible metallic elements is highly desirable but challenging.Here,for the first time,by using an innovative solid ligand-assisted approach,we achieve the solid-solution alloying between the bulk-immiscible Au and Rh in plenty of clean,ultrafine(∼1.6 nm)and highly dispersed nanoclusters.The solid-solution alloying of immiscible Au and Rh significantly enhances their catalytic performance toward the hydrogen evolution from formic acid in contrast to the monometallic Au and Rh nanoclusters.Moreover,the resultant binary solid-solution nanoclusters are stable without any segregation during catalytic reactions.The approach demonstrated here for homogeneously mixing the immiscible metals at the atomic scale will benefit the creation of advanced alloys and their catalytic applications in future.展开更多
The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution re...The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.展开更多
The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Ch...The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Charpy U-notch impact energy initially increased and subsequently decreased as the solid-solution temperature rose,while the yield strength consistently decreased.The size of prior austenite grain and martensite block always increased with rising the solid-solution temperature,and austenite grain growth activation energy is 274,969 J/mol.The growth of prior austenite was restricted by primary carbides M6C and MC.The dissolution of the primary carbides not only enhanced solid-solution strengthening and secondary hardening effects but also increased the volume fraction of retained austenite.The increase in the ultimate tensile strength and Charpy U-notch impact energy was primarily attributed to the dissolution of the primary carbides M6C and MC,while the decrease was due to the increase in the size of prior austenite grain and martensite block.Exceptional combination of strength,ductility and toughness with ultimate tensile strength of 2511 MPa,yield strength of 1920 MPa,elongation of 9.5%,reduction of area of 41%and Charpy U-notch impact energy of 19.5 J was obtained when experimental steel was solid-solution treated at 1020℃.展开更多
基金Outstanding Doctorate Dissertation Cultivation Fund of Xi'an University of Architecture and Technology(160842012)National Natural Science Foundation of China(52404409,52374401,52104382)+3 种基金China Postdoctoral Science Foundation(2024MD753961)Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan(2022TD-30)Key R&D Plan of Shaanxi Province(2023JBGS-14,2024QCYKXJ-116)Xi'an Science and Technology Plan Project(24ZDCYJSGG0043,2023JH-GXRC-0020)。
文摘Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.
文摘Developing an efficient photocatalyst is the key to realize the practical application of photocatalysis.The S-scheme heterojunction has great potential in photocatalysis due to its unique charge-carrier migration pathway,effective light absorption and high redox capacity.However,further enhancing the built-in electric field of the S-scheme,accelerating carrier separation,and achieving higher photocatalytic performance remain unresolved challenges.Herein,based on the continuously adjustable band structure of continuous solid-solution,a novel 0D/2D all solid-solution S-scheme heterojunction with adjustable internal electric field was designed and fabricated by employing a solid-solution of ZnxCd_(1–x)S and Bi_(2)MoyW_(1–y)O_(6)respectively as reduction and oxidation semiconductors.The synergistic optimization of effective light absorption,fast photogenerated carrier separation,and high redox potential leads can be tuned to promote photocatalytic activity.Under visible light,the S-scheme system constructed by Zn_(0.4)Cd_(0.6)S quantum dot(QDs)and Bi_(2)Mo_(0.2)W_(0.8)O_(6)monolayer exhibits a high rate for photocatalytic degradation C_(2)H_(4)(150.6×10^(–3)min^(–1)),which is 16.5 times higher than that of pure Zn_(0.4)Cd_(0.6)S(9.1×10^(–3)min^(–1))and 53.8 times higher than pure Bi_(2)Mo_(0.2)W_(0.8)O_(6)(2.8×10^(–3)min^(–1)).Due to the unique charge-carrier migration pathway,photo-corrosion of Zn_(x)Cd_(1–x)S is further inhibited simultaneously.In-situ irradiation X-ray photoelectron spectroscopy,photoluminescence spectroscopy,time-resolved photoluminescence,transient absorption spectroscopy and electron paramagnetic resonance provide compelling evidence for interfacial charge transfer via S-scheme pathways,while in-situ diffuse reflectance infrared Fourier transform spectroscopy identifies the reaction pathway for C_(2)H_(4)degradation.This novel S-scheme photocatalysts demonstrates excellent performance and potential for the practical application of the fruits and vegetables preservation at room temperatures.
基金support from the Program for the Development of Science and Technology of Jilin Province(Grant No.SKL202402004)the Jilin Province Major Science and Technology Program(Grant No.20240211002GX)the Open Research Fund of the Key Laboratory of Functional Materials Physics and Chem-istry of the Ministry of Education(Jilin Normal University,Grant No.202405).
文摘Continuously improving the mechanical properties of ultra-high-temperature ceramics(UHTCs)is a key requirement for their future applications.However,the mechanical properties of conventional UHTCs,HfB_(2) and ZrB_(2),remain unsatisfactory among transition metal light-element(TMLE)compounds.TiB_(2) has superior mechanical properties compared to both HfB_(2) and ZrB_(2),but suffers from inherent brittleness and limited oxidation resistance.In this work,low-content solidsolution strengthening was used to fabricate dense samples of Tix(Hf/Zr)_(1-x)B_(2)(THZ)under high pressure and high temperature(HPHT).Compared to pure TiB_(2),Ti_(0.94)(Hf/Zr)0.06B_(2) exhibits a significant 38.8%increase in oxidation resistance temperature(950℃),while Ti_(0.91)(Hf/Zr)_(0.09)B_(2) shows a notable 28%enhancement in fracture toughness(5.8 MPa·m^(1/2)).The synergistic effect of a dual-atom solid-solution results in local internal stress and anomalous lattice contraction.This lattice contraction helps resist oxygen invasion,thereby elevating the oxidation resistance threshold.Additionally,the internal stress induces crack deflection within individual grains,enhancing toughness through energy dissipation.This work provides a new strategy for fabricating robust UHTCs within TMLE systems,demonstrating significant potential for future high-temperature applications.
基金supported by the National Natural Science Foundation of China(Nos.U22A20145,51904115,52072151,52171211,and 52271218)Jinan Independent Innovative Team(No.2020GXRC015)the Major Program of Shandong Province Natural Science Foundation(Nos.ZR2023ZD43 and ZR2021ZD05).
文摘The low specific capacitances(SCs)of traditional carbonaceous negative electrodes significantly limit the enhancement in energy density of aqueous hybrid supercapacitors(AHCs).It is still hugely challengeable to explore a candidate with large SCs,which can stably operate in the negative potential region mean-while.For this propose,we design and fabricate solid-solution Ru_(x)Cu_(1-x)O_(2) nanocrystals(NCs),which exhibit competitive SCs and electrochemical stability within the potential range from-0.9 V to 0.0 V in the aqueous KOH electrolyte.The incorporation of Cu enhances the electrochemical utilization of RuO_(2),reaction kinetics,electronic conductivity,and hydrogen evolution overpotentials,which are all highly dependent upon the added contents of Cu species.The optimized Ru_(0.8)Cu_(0.2)O_(2)(RuCu82)electrode of a high mass loading of 5 mg cm^(-2) reveals the best electrochemical capacitances in terms of reversible SCs and capacitance degradation at room temperature and-20℃.Furthermore,the reversible K^(+)-(de)intercalation induced pseudocapacitance is proposed for electrochemical charge storage process of RuCu82.In particu-lar,remarkable specific energy of 59.1 Wh kg-1 at 400 W kg-1 and excellent cycling stability are achieved in the assembled NiCoO_(2)//RuCu82 AHCs.Our contribution here presents a new promising negative elec-trode platform with high SCs and electrochemical stability for next-generation AHCs.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
文摘A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties of this steel were inves-tigated. The increase in solid-solution temperature first increased and then decreased the values of ultimate strength (UTS) and Charpy U-notch (CUN) energy. The increase in the UTS and CUN values was caused by the dissolution of the primary carbides M6C and MC, while the decrease in both strength and toughness was due to the increase in the prior austenite grain size. Samples that were solid-solution treated at 1000℃ exhibited an optimal combination of strength and toughness with a UTS of 2020MPa, yield strength of 1780MPa, and CUN energy of 68J, as well as a correlative fracture toughness KIC value of about 105MPam1/2.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301300)
文摘The effects of Ni content(0–2.1wt%)on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated,and the corresponding mechanisms of influence were analyzed.The results show that the amount of precipitated phase increases in the cast alloys with increasing Ni content.When the Ni content is 0.45wt%or 0.98wt%,needle-like Be_(21)Ni_5 phases form in the grains and are mainly distributed in the interdendritic regions.When the Ni content is 1.5wt%or greater,a large number of needle-like precipitates form in the grains and chain-like Be_(21)Ni_5 and Be Ni precipitates form along the grain boundaries.The addition of Ni can substantially refine the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.The hindering effects of both the dissolution of Ni into the matrix and the formation of Be–Ni precipitates on grain-boundary migration are mainly responsible for refining the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.Higher Ni contents result in finer microstructures;however,given the precipitation characteristics of Be–Ni phases and their dissolution into the matrix during the solid-solution treatment,the upper limit of the Ni content is 1.5wt%–2.1wt%.
基金support by the National Natural Science Foundation of China (No. 50571018)the Program for New Century Excellent Talents in Universities of China (No. NCET- 05-0105)
文摘MCoCrFeNiTix (M = Cu, Al; x: molar ratio, x = 0, 0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy. By the component substitution orAl for Cu, the microstructure changes from the face-centered cubic solid solution of original CuCoCrFeNiTix alloys to the body-centered cubic solid solution of AlCoCrFeNiTix alloys. Compared with original CuCoCrFeNiTix alloys, AlCoCrFeNiTix alloys keep the similar good ductility and simultaneously possess a much higher compressive strength, which are even superior to most of the reported high-strength alloys like bulk metallic glasses.
基金This work was financially supported by the S&T Research Development Project of the Ministry of Science and Technology, China (No.05021050).
文摘The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.
基金the National Natural Science Foundation of China(No.52173246)the Science and Tech-nology Development Plan of Suzhou(No.ZXL2022176)Natural Sci-ence Foundation of the Jiangsu Higher Education Institutions(No.22KJA430009)and the“111 Project”(No.B13013).
文摘Sodium-ion batteries(SIBs)are proved as one of the most acceptable candidates for replacing lithium-ion batteries in some fields by virtue of a similar“rocking chair”mechanism and the abundance of sodium.The voltage,rate performance,and energy density of these batteries are mainly determined by the cath-odes.Hence,a Li-Ni-Co co-substituted P2-Na_(0.67)[Li_(0.1)(Mn_(0.7)Ni_(0.2)Co_(0.1))_(0.9)]O_(2)(NLMNC)with ribbon super-structure is prepared with the aim of multi-ion synergistic modification.Owing to the addition of Ni and Co,the Jahn-Teller distortion of Mn can be suppressed corresponding with the improved structural stability,and a little bit of oxygen redox activities is triggered.When with the substitution of 10%Li,the X-ray diffraction(XRD)peaks of NLMNC show the ribbon superstructure at about 21°and 22°.The smooth charge/discharge profiles of the NLMNC cathode exhibit the solid-solution reaction.In addition,the platform at high voltage disappears corresponding with the existing oxygen redox activities being suppressed which may be related to the ribbon superstructure and the promotion of the Ni redox.Such NLMNC cathode can deliver a reversible discharge capacity of 123.5 mA h g^(-1)at 10 mA g^(-1).Even if the current density increases to 500 mA g^(-1),a reversible discharge capacity of 112.8 mA h g^(-1)still can be ob-tained.The distinguished cycling stability is related to the reversible migration of Li+between the metal oxide layer and the interlayer and low volume change during cycling.It is also needing to be mentioned that the capacity retention of NLMNC cathode is about 94.4%(based on the highest discharge capacity)after 100 cycles.This work presents an effective route to develop high-performance cathodes for SIBs.
基金supported by the National Key Technology R&D Program of China (2011BAE22B01)
文摘The effect of solid-solution treatment on corrosion and electrochemical mechanisms of Mg-15Y alloy in 3.5 wt.% NaCl solution was investigated by electrochemical testing, immersion testing and SEM observation. The results indicated that the corrosion resistance of Mg-15Y sample gradually deteriorated with immersion time increasing, which was consistent with the observation of corrosion morphologies. The solid-solution treatment decreased the amounts of second phase Mg24Ys. The Ecor~ and corrosion rate of as-cast samples were both lower than those of solid solution-treated samples, and both increased with increment of solid solution-treated time. The corrosion mechanism was proposed for the galvanic, pitting and filiform corrosion which varied with the immersion time and solid-solution treatment.
文摘The role of Nd solid-solution and grain-boundary segregation in binary NiAl alloy was studied based on microhardness and compressive macrostrain. X-ray and Auger spectra studies indicate that Nd not only is soluble in grain interiors, but also segregates to the grain boundaries. Nd solid-solution induces an increase of the microhardness from 269 to 290 HV in grain interiors and segregation results in an enhancement of hardness from 252 to 342 HV on grain boundaries. Thus, the cohesion of grain boundaries is enhanced by Nd segregation, which make the alloy doped with 0.05 wt pct Nd exhibit more compressive microstrain, i.e. the higher the compressive ductility at room temperature, the better the final surface condition at elevated temperature. Finally, a discussion was made on the reason that Nd strengthens the grain boundaries in NiAl intermetallic alloy.
基金financially supported by the POSCO Science Fellowship of POSCO TJ Park Foundation,the National Research Foundation of Korea(No.NRF-2020R1C1C1003554)the Creative Materials Discovery Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(No.NRF2016M3D1A1023384)+1 种基金the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE,P0002019,The Competency Development Program for Industry Specialist)support from the German Research Foundation(Deutsche Forschungsgemeinschaft,DFG)under the priority program 2006"CCA-HEA"。
文摘High-and medium-entropy alloys(HEAs and MEAs)possess high solid-solution strength.Numerous investigations have been conducted on its impact on yield strength,however,there are limited reports regarding the relation between solid-solution strengthening and strain-hardening rate.In addition,no attempt has been made to account for the dislocation-mediated plasticity;most works focused on twinning-or transformation-induced plasticity(TWIP or TRIP).In this work we reveal the role of solidsolution strengthening on the strain-hardening rate via systematically investigating evolutions of deformation structures by controlling the Cr/V ratio in prototypical V_(1-x)Cr_(x)CoNi alloys.Comparing the TWIP of CrCoNi with the dislocation slip of V_(0.4)Cr_(0.6)CoNi,the hardening rate of CrCoNi was superior to slip-band refinements of V_(0.4)Cr_(0.6)CoNi due to the dynamic Hall-Petch effect.However,as V content increased further to V_(0.7)Cr_(0.3)CoNi and VCoNi,their rate of slip-band refinement in V_(0.7)Cr_(0.3)CoNi and VCoNi with high solid-solution strength surpassed that of CrCoNi.Although it is generally accepted in conventional alloys that deformation twinning results in a higher strain-hardening rate than dislocation-mediated plasticity,we observed that the latter can be predominant in the former under an activated huge solid-solution strengthening effect.The high solid-solution strength lowered the cross-slip activation and consequently retarded the dislocation rearrangement rate,i.e.,the dynamic recovery.This delay in the hardening rate decrease,therefore,increased the strain-hardening rate,results in an overall higher strain-hardening rate of V-rich alloys.
文摘Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were analyzed, and the results showed that, the austenite grain size increased with the increase of heating temperature, When the heating temperature reached 1050°C and 1250°C, the austenite grains appeared the obvious coarsening process twice. TiC particles dissolved gradually as the heating temperature increased. When the heating temperature rose to 1100°C, TiC particles disappeared basically, When the heating temperature rose to 1250°C, TiN particles began to be dissolved and grow up.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51571058 and 52171108。
文摘The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.
文摘Solid-solution strengthened superalloys are widely used because they possess excellent levels of high temperature strength and environmental resistance in combination with ease of fabrication.This latter factor is of utmost importance since it is a primary economic determinant.From a metal producer's point of view,it determines the viable range of product forms that can be offered to the marketplace.From a user's point of view,it determines the viable range of manufacturing processes that can be used to make the final product.For both the producer and user,an alloy's heat treatment and property response is a central issue for defining fabricability.The areas of interest are typically quite fundamental and include such phenomena as recrystallization and grain growth,critical strain effects,relief of residual stresses,and cooling rate effects.In heat resisting alloys,these phenomena often involve subtle complexities due to the precipitation of carbides and,in some cases,the precipitation of intermetallic phases. This paper will deal with these complexities,providing relevant data and concrete examples wherever possible.The information presented should enable the proper selection of heat treatment practices for solid-solution strengthened superalloys.
基金supports from the National Natural Science Foundation of China(No.22109171)the Chongqing Talent Program(No.cstc2024ycjh-bgzxm0068))+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202301101)the Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0315).
文摘Hydrogen energy carrier produced by water electrolysis in alkaline electrolytes is rather meaningful and significant for global sustainability imperatives,while the highpH condition usually leads to a poor reversibility of proton adsorption and desorption that significantly determines the hydrogen-generation activity in hydrogen evolution reaction(HER)process.Herein,we demonstrate a remarkable Ru-Mo solid-solution nanocrystal catalyst in alkaline HER process by a very simple but feasible pyrolysis and alkali leaching strategy.Benefiting from the pinning effect and local chemical-and electronic-structure regulations of Mo solute atoms,an ultra-low overpotential(17.3 mV)and an exceptional stability(>100 h)at the typical current density of 10 mA·cm^(−2)are achieved on the ultrasmall Ru-Mo solid-solution nanocrystal catalyst in 1.0 M KOH electrolyte.Density function theory(DFT)calculations gain an insight into the synergistic effect of neighboring Ru and Mo sites in alkaline HER process,where Mo solute atoms are beneficial for the adsorption and activation of water molecules for proton generation and accumulation due to their rich outermost 4d vacant orbitals,while the energy-favorable Ru sites are responsible for the fast deprotonation kinetics of hydrogen intermediates.Our work may provide an interesting route for the development of efficient and stable solid-solution alloy nanocrystals towards alkaline water electrolysis and beyond.
文摘Striking effects are expected in solid-solution alloying,which offers enormous possibilities for various applications,especially in industrial catalysis.However,phase diagrams have revealed that a wide range of metallic elements are immiscible with each other even above their melting points.Achieving such unknown alloying between different immiscible metallic elements is highly desirable but challenging.Here,for the first time,by using an innovative solid ligand-assisted approach,we achieve the solid-solution alloying between the bulk-immiscible Au and Rh in plenty of clean,ultrafine(∼1.6 nm)and highly dispersed nanoclusters.The solid-solution alloying of immiscible Au and Rh significantly enhances their catalytic performance toward the hydrogen evolution from formic acid in contrast to the monometallic Au and Rh nanoclusters.Moreover,the resultant binary solid-solution nanoclusters are stable without any segregation during catalytic reactions.The approach demonstrated here for homogeneously mixing the immiscible metals at the atomic scale will benefit the creation of advanced alloys and their catalytic applications in future.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21771035 and 21872024)the Fundamental Research Funds for the Central Universities(grant nos.2412018ZD009 and 2412019FZ009)the Jilin Provincial Research Foundation for Basic Research(grant nos.20200201071JC and 20190303100SF).
文摘The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.
基金supported financially by National Key Research and Development Program of China(No.2022YFB3705200)Heilongjiang Province's Key Technology Project:‘Leading the Charge with Open Competition’(No.2023ZXJ04A02)Youth Program of CISRI Funding under Grant(No.S-23T60190B).
文摘The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Charpy U-notch impact energy initially increased and subsequently decreased as the solid-solution temperature rose,while the yield strength consistently decreased.The size of prior austenite grain and martensite block always increased with rising the solid-solution temperature,and austenite grain growth activation energy is 274,969 J/mol.The growth of prior austenite was restricted by primary carbides M6C and MC.The dissolution of the primary carbides not only enhanced solid-solution strengthening and secondary hardening effects but also increased the volume fraction of retained austenite.The increase in the ultimate tensile strength and Charpy U-notch impact energy was primarily attributed to the dissolution of the primary carbides M6C and MC,while the decrease was due to the increase in the size of prior austenite grain and martensite block.Exceptional combination of strength,ductility and toughness with ultimate tensile strength of 2511 MPa,yield strength of 1920 MPa,elongation of 9.5%,reduction of area of 41%and Charpy U-notch impact energy of 19.5 J was obtained when experimental steel was solid-solution treated at 1020℃.