Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is cri...Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is critical,given their significant use in smart materials and prevalence as environmental micropollutants released from the food and dye industries.However,the current host molecules catering to azobenzene compounds are mainly limited to cyclodextrins,pillar[n]arenes and cucurbit[n]urils,demonstrating a moderate affinity.This report describes that a novel 3,3'-bipyridinium-based cyclophane was capable of encapsulating anionic azobenzene compounds in water with high binding affinity and pH stability through electrostatic attraction-enhanced mechanism,surpassing the extensively reported supramolecular systems.1D&2D NMR experiments,UV-vis spectrum,X-ray crystallography and computational modeling were carried out to understand the host-vip complexation.It's worth noting that the tetracationic cyclophane exhibited good selective and anti-interference encapsulation properties in binary,ternary and seawater systems.Furthermore,upon UV/white light irradiation,the reversible conversion between(E)-4,4'-azobisbenzoate and(Z)-4,4'-azobisbenzoate triggers the dissociation/recomplexation of the host-vip complex within 3 min.This reversible photo-switchable(E)-disodium 4,4'-azobisbenzoateBPy-Box^(4+)supramolecular system holds promise for designing novel materials for extraction/release of azo compounds and other small smart materials.展开更多
Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the...Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the treatment of gastrointestinal and respiratory issues along with increasing the platelet count in patients suffering from dengue.In this review paper,the nutritional composition and bioactive compounds of guava leaves,including proteins,vitamins,minerals,and polysaccharides,have been reviewed.The methods of extraction of bioactive compounds from guava leaves and their bioactivities,including antioxidant,anti-diabetic,and anti-cancer potential,have been explored.Further,encapsulation techniques for improving the transport of bioactive compounds and living cells into foods have been studied.The application of guava leaves in different food systems such as herbal tea,pork sausage,chocolates,jelly,meals for chickens,functional beverages,and as antibacterial agents in food preservatives has also been investigated.The findings of this review illustrated that the phytochemicals present in guava leaves showed excellent antimicrobial and antioxidant properties.Encapsulation appears to be a promising technique for improving the stability,bioavailability,and controlled release of bioactive chemicals extracted from guava leaves.Different methods for the encapsulation of bioactive compounds employed and applied in distinct food systems showed preservation of phytochemicals,improved bioactivities,and nutritional values.Overall,this review paper demonstrated how guava leaves,an abundant source of bioactive compounds,can be used as a multipurpose component to create functional foods,edible coatings,and active packaging to enhance the nutritional,antioxidant,and antimicrobial properties of various food systems that have qualities that promote health.展开更多
The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism o...The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism of the solid-phase reaction between Fe_(3)O_(4)and Cr_(2)O_(3)were investigated using the diffusion couple method at 1473 K.Not only the diffusion behavior of Fe^(2+)ions and Cr^(3+)ions was elucidated,but also the solid solution behavior of Fe^(3+)ions was discussed clearly.The microscopic morphology of the diffusion couple and the change in the concentrations of Fe and Cr cations across the diffusion layers were analyzed using scanning electron microscopy and en-ergy dispersive spectroscopy.The self-diffusion coefficients of cations were calculated based on the concentration profiles of Fe and Cr,with the results indicating that the self-diffusion coefficient of the Fe ions was consistently higher than that of the Cr ions.Additionally,a mixture of Fe_(3)O_(4)and Cr_(2)O_(3)was annealed at 1373-1473 K for 1-5 h,and the kinetic parameters were calculated by studying the phase content of the product.The phase content of Fe(Cr_(x)Fe_(1-x))_(2)O_(4)in the product was determined by Rietveld refinement of X-ray diffraction data,revealing that an activation energy(E)of 177.20 kJ·mol^(-1) and a pre-exponential factor(B)of 610.78 min^(-1)of the solid-phase reac-tion that produced the Fe(Cr_(x)Fe_(1-x))_(2)O_(4)spinel.展开更多
Cryopreservation is a fundamental technology in biomedical research,regenerative medicine,and tissue engineering,enabling the long-term storage of cells,tissues,and organs.However,its effectiveness is limited by chall...Cryopreservation is a fundamental technology in biomedical research,regenerative medicine,and tissue engineering,enabling the long-term storage of cells,tissues,and organs.However,its effectiveness is limited by challenges such as intracellular ice formation,cryoprotectant toxicity,and reduced post-thaw viability.This review explores the crucial role of encapsulation in enhancing cryopreservation efficiency,with a focus on recent advances in materials science,bioengineering,and cryobiology.Emerging technologies,such as nanotechnology and stimuli-responsive polymers,are transforming encapsulation strategies.Innovations such as microfluidic systems offer precise control over cooling rates and cryoprotectant distribution,thereby mitigating conventional limitations.The review also addresses current obstacles related to scaling up encapsulation processes and ensuring the long-term biocompatibility and stability of preserved specimens.By synthesizing recent findings,this work provides a comprehensive resource for researchers and clinicians seeking to enhance biopreservation techniques and their applications in contemporary medicine and biotechnology.Finally,the review identifies critical knowledge gaps that must be addressed to improve the efficacy of cryopreservation strategies and advance their clinical translation.展开更多
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct...High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.展开更多
Hydrogen-bonded framework(HOF) offers an attractive platform to encapsulate enzymes and stabilize their conformation,due to the advantages of mild synthesis conditions,tailorable pore structure,and backbone biocompati...Hydrogen-bonded framework(HOF) offers an attractive platform to encapsulate enzymes and stabilize their conformation,due to the advantages of mild synthesis conditions,tailorable pore structure,and backbone biocompatibility.However,the efficiency of this HOF approach relies on the interfacial interactions between enzyme vip and the ligand precursors,limiting its adaptability to enzymes with varying surface chemistry property.In this study,we report a site-specific surface modification strategy to positively tailor the enzyme surface charge,facilitating the biomimetic encapsulation of enzymes within HOF in situ.Both experimental results and computational simulation reveal that site-specific amination of enzyme surface's acidic residues contributes to the interfacial accumulation of carboxylic ligand precursors in aqueous solutions via synergistic electrostatic and hydrogen bonding interactions.This substantially facilitates the in situ growth of porous HOF surrounding the aminated enzyme biotemplates,with up to 100% enzyme loading efficiency.The resultant hydrogen-bonded biohybrid framework(HBF) retains high biocatalytic functions while exhibiting exceptional stability under harsh conditions.By leveraging the marked catalytic activity of GOx-NH_(2)@HBF-1 and a H_(2)O_(2)-sensitive QD,a highly sensitive glucose fluorescence sensor is fabricated with a wide linear range(5-2000 μmol/L) and a low quantification limit of 5 μmol/L.This work presents a simple yet effective enzyme surface engineering approach for integrating enzyme into HOF,opening new avenues for the construction of multifunctional HOF biocomposites.展开更多
Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermal...Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermally mediated in situ repair and encapsulation strategy to construct high-performance PSCs by incorporating piperazine thioctic acid salt(TAPPZ)as a dopant into the perovskite precursor Thermally dissociated piperazine(PPZ)from TAPPZ integrates microcrystals to form larger grain(>2000 nm),while the carboxylic acid in thioctic acid(TA)and the amine salt in TAPPZ synergistically passivate and transform PbI_(2),significantly reducing its residual amount.Additionally,TAPPZ undergoe thermal self-crosslinking during perovskite annealing,enabling melt-polymerization to form in situ encapsulation for enhanced water resistance.The TAPPZ-incorporated device achieves a remarkable efficiency of 25.65% and exhibits excellent operational stability,retaining over 90% of its initial efficiency after 2000 h under ambient conditions(20-30℃,20%-30% relative humidity).This study provide new insights into the construction of high-performance perovskite solar cells by designing and synthe sizing multifunctional single molecules for in situ repair and encapsulation of perovskites.展开更多
Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key ...Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa...Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
Polymerase chain reactions(PCR)are a very important tool for use in cloning,nucleic acid sequencing and diagnostic testing.The storage conditions of PCR reagents are limited to freezing and a lot of mixing steps are n...Polymerase chain reactions(PCR)are a very important tool for use in cloning,nucleic acid sequencing and diagnostic testing.The storage conditions of PCR reagents are limited to freezing and a lot of mixing steps are needed.In this paper,we report using metal ions to form coordination nanomaterials with the intrinsic components of the PCR reagents including dNTP,DNA primers and DNA polymerase as an integrated PCR reaction system.To complete PCR reactions,users need only to dissolve the coordination nanomaterials with a buffer and add template DNA.A few transition metal ions were screened and Cu^(2+)was found to be the most effective metal ion for this purpose.Then the encapsulation efficiency of PCR reagents was measured,which can reach close to 100%for the primers and DNA polymerase,but only 10%for dNTP because dNTP was excess.Further study also exhibited this integrated PCR reaction system can be used for DNA detection with a similar detection limit to the normal PCR,and showed good stability of encapsulated PCR nanomaterial after storage for a week.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples...For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200℃ and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.展开更多
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
Herein,nanosized Hf_(6)Ta_(2)O_(17) encapsulated graphite flakes were firstly constructed using the sol-gel method,then deposited on the surface of carbon/carbon(C/C)composites by plasma spraying technique to prolong ...Herein,nanosized Hf_(6)Ta_(2)O_(17) encapsulated graphite flakes were firstly constructed using the sol-gel method,then deposited on the surface of carbon/carbon(C/C)composites by plasma spraying technique to prolong their service span in critical environments.Nanoindentation results affirmed the active influ-ence of graphite flakes on elevating the toughness of the Hf_(6)Ta_(2)O_(17) coating.Besides,after being exposed to the oxyacetylene torch with a peak temperature of about 2000℃,the sample achieved near zero ab-lation(0.06 mg/s),meanwhile its porosity and mass ablation rate showed 39.5%and 60.0%reduction when compared to pure Hf_(6)Ta_(2)O_(17) sample.During exposure,the external Hf_(6)Ta_(2)O_(17) served as an oxy-gen barrier for internal graphite flakes,inversely internal graphite flakes provided a“pinning”effect on external Hf_(6)Ta_(2)O_(17),which accounted for its exceptional ablation performance.This work offers a new insight into the design of surface modification of C/C composites and other high-temperature structural materials.展开更多
The prevalence of iron deficiency anemia(IDA)remains high in infants,resulting in growth retardation,neurodevelopmental impairment,immunodeficiency and other irreversible injuries.Efficient and safe iron supplementati...The prevalence of iron deficiency anemia(IDA)remains high in infants,resulting in growth retardation,neurodevelopmental impairment,immunodeficiency and other irreversible injuries.Efficient and safe iron supplementation for infants has been the goal of recent research.This study aims to investigate the effect of encapsulated ferric pyrophosphate(FePP)on intestinal inflammation and gut microbiota in IDA suckling rats.Newborn Sprague-Dawley rats were gavaged with low and high doses of FePP and FeSO4(2 and 10 mg Fe/kg BW,respectively)during postnatal days 2-14,while the Ctrl group was gavaged with saline.Results showed that FePP supplementation was as effective as FeSO4 in promoting growth,alleviating anemia and restoring body iron levels.Both low and high doses of FePP could significantly down-regulate the expression of pro inflammatory cytokines in the colon to the level similar to that in the Ctrl group(P>0.05).However,the high dose of FeSO4 did not show a down-regulation effect.Compared with the Ctrl group,IDA caused a disturbance of gut microbiota composition in suckling rats,and FePP could restore this dysbiosis.Besides,FePP was more beneficial than FeSO4 in increasing the abundance of beneficial bacteria such as Bacteroides and Akkermansia.Spearman’s correlation analysis showed a correlation between gut microbiota and biochemical indicators such as iron status,pro-inflammatory cytokine expression,and oxidative stress level.Overall,these findings suggested that FePP could effectively improve IDA,and is more effective than FeSO4 in alleviating intestinal inflammation and regulating gut microbiota,which provides a basis for the application of new iron fortificant in infant formula.展开更多
The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameter...Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameters such as the emulsifier and PLGA concentrations, the pH and concentration of the insulin solution, the solvent evaporation method and PVA in the internal phase were investigated for the encapsulation efficiency. The results indicated that higher emulsifier concentration, relatively less amount of PLGA and lower insulin concentration would increase the entrapment of insulin. Furthermore, pH of insulin solution approaching to pI (5.3), adding some PVA to the internal phase and a shorter evaporation time helped to enhance the incorporation efficiency of insulin. Optimized preparation parameters led to nanoparticles with well-defined characteristics such as an average size around 149.6 nm, a polydispersity lower than 0.1 and high encapsulation efficiency up to 42.8%.展开更多
基金support by the National Natural Science Foundation of China(No.52473225)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110262)。
文摘Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is critical,given their significant use in smart materials and prevalence as environmental micropollutants released from the food and dye industries.However,the current host molecules catering to azobenzene compounds are mainly limited to cyclodextrins,pillar[n]arenes and cucurbit[n]urils,demonstrating a moderate affinity.This report describes that a novel 3,3'-bipyridinium-based cyclophane was capable of encapsulating anionic azobenzene compounds in water with high binding affinity and pH stability through electrostatic attraction-enhanced mechanism,surpassing the extensively reported supramolecular systems.1D&2D NMR experiments,UV-vis spectrum,X-ray crystallography and computational modeling were carried out to understand the host-vip complexation.It's worth noting that the tetracationic cyclophane exhibited good selective and anti-interference encapsulation properties in binary,ternary and seawater systems.Furthermore,upon UV/white light irradiation,the reversible conversion between(E)-4,4'-azobisbenzoate and(Z)-4,4'-azobisbenzoate triggers the dissociation/recomplexation of the host-vip complex within 3 min.This reversible photo-switchable(E)-disodium 4,4'-azobisbenzoateBPy-Box^(4+)supramolecular system holds promise for designing novel materials for extraction/release of azo compounds and other small smart materials.
文摘Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the treatment of gastrointestinal and respiratory issues along with increasing the platelet count in patients suffering from dengue.In this review paper,the nutritional composition and bioactive compounds of guava leaves,including proteins,vitamins,minerals,and polysaccharides,have been reviewed.The methods of extraction of bioactive compounds from guava leaves and their bioactivities,including antioxidant,anti-diabetic,and anti-cancer potential,have been explored.Further,encapsulation techniques for improving the transport of bioactive compounds and living cells into foods have been studied.The application of guava leaves in different food systems such as herbal tea,pork sausage,chocolates,jelly,meals for chickens,functional beverages,and as antibacterial agents in food preservatives has also been investigated.The findings of this review illustrated that the phytochemicals present in guava leaves showed excellent antimicrobial and antioxidant properties.Encapsulation appears to be a promising technique for improving the stability,bioavailability,and controlled release of bioactive chemicals extracted from guava leaves.Different methods for the encapsulation of bioactive compounds employed and applied in distinct food systems showed preservation of phytochemicals,improved bioactivities,and nutritional values.Overall,this review paper demonstrated how guava leaves,an abundant source of bioactive compounds,can be used as a multipurpose component to create functional foods,edible coatings,and active packaging to enhance the nutritional,antioxidant,and antimicrobial properties of various food systems that have qualities that promote health.
基金supported by the National Natural Science Foundation of China(No.52274306)Open Fund of State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology),China(No.SYSJJ2020-03).
文摘The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism of the solid-phase reaction between Fe_(3)O_(4)and Cr_(2)O_(3)were investigated using the diffusion couple method at 1473 K.Not only the diffusion behavior of Fe^(2+)ions and Cr^(3+)ions was elucidated,but also the solid solution behavior of Fe^(3+)ions was discussed clearly.The microscopic morphology of the diffusion couple and the change in the concentrations of Fe and Cr cations across the diffusion layers were analyzed using scanning electron microscopy and en-ergy dispersive spectroscopy.The self-diffusion coefficients of cations were calculated based on the concentration profiles of Fe and Cr,with the results indicating that the self-diffusion coefficient of the Fe ions was consistently higher than that of the Cr ions.Additionally,a mixture of Fe_(3)O_(4)and Cr_(2)O_(3)was annealed at 1373-1473 K for 1-5 h,and the kinetic parameters were calculated by studying the phase content of the product.The phase content of Fe(Cr_(x)Fe_(1-x))_(2)O_(4)in the product was determined by Rietveld refinement of X-ray diffraction data,revealing that an activation energy(E)of 177.20 kJ·mol^(-1) and a pre-exponential factor(B)of 610.78 min^(-1)of the solid-phase reac-tion that produced the Fe(Cr_(x)Fe_(1-x))_(2)O_(4)spinel.
基金supported by the National Natural Science Foundation of China(82172114)the"Challenge and Response"project for key and common technology research of Hefei(GJ2022SH08).
文摘Cryopreservation is a fundamental technology in biomedical research,regenerative medicine,and tissue engineering,enabling the long-term storage of cells,tissues,and organs.However,its effectiveness is limited by challenges such as intracellular ice formation,cryoprotectant toxicity,and reduced post-thaw viability.This review explores the crucial role of encapsulation in enhancing cryopreservation efficiency,with a focus on recent advances in materials science,bioengineering,and cryobiology.Emerging technologies,such as nanotechnology and stimuli-responsive polymers,are transforming encapsulation strategies.Innovations such as microfluidic systems offer precise control over cooling rates and cryoprotectant distribution,thereby mitigating conventional limitations.The review also addresses current obstacles related to scaling up encapsulation processes and ensuring the long-term biocompatibility and stability of preserved specimens.By synthesizing recent findings,this work provides a comprehensive resource for researchers and clinicians seeking to enhance biopreservation techniques and their applications in contemporary medicine and biotechnology.Finally,the review identifies critical knowledge gaps that must be addressed to improve the efficacy of cryopreservation strategies and advance their clinical translation.
基金supported by the National Natural Science Foundation of China(Grant No.51976092)。
文摘High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.
基金financial support from projects of the National Natural Science Foundation of China(Nos.22104159,22174164)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011632,2024B1515020070)。
文摘Hydrogen-bonded framework(HOF) offers an attractive platform to encapsulate enzymes and stabilize their conformation,due to the advantages of mild synthesis conditions,tailorable pore structure,and backbone biocompatibility.However,the efficiency of this HOF approach relies on the interfacial interactions between enzyme vip and the ligand precursors,limiting its adaptability to enzymes with varying surface chemistry property.In this study,we report a site-specific surface modification strategy to positively tailor the enzyme surface charge,facilitating the biomimetic encapsulation of enzymes within HOF in situ.Both experimental results and computational simulation reveal that site-specific amination of enzyme surface's acidic residues contributes to the interfacial accumulation of carboxylic ligand precursors in aqueous solutions via synergistic electrostatic and hydrogen bonding interactions.This substantially facilitates the in situ growth of porous HOF surrounding the aminated enzyme biotemplates,with up to 100% enzyme loading efficiency.The resultant hydrogen-bonded biohybrid framework(HBF) retains high biocatalytic functions while exhibiting exceptional stability under harsh conditions.By leveraging the marked catalytic activity of GOx-NH_(2)@HBF-1 and a H_(2)O_(2)-sensitive QD,a highly sensitive glucose fluorescence sensor is fabricated with a wide linear range(5-2000 μmol/L) and a low quantification limit of 5 μmol/L.This work presents a simple yet effective enzyme surface engineering approach for integrating enzyme into HOF,opening new avenues for the construction of multifunctional HOF biocomposites.
基金supported by the National Natural Science Foundation of China(22238002 and 22208047)the China Postdoctoral Science Foundation(2024T170086 and 2022M720639)+1 种基金the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)the Fundamental Research Funds for the Central Universities(DUT22LAB610)。
文摘Despite the ongoing increase in the efficiency of perovskite solar cells(PSCs),residual lead iodide(PbI2and moisture sensitivity issues continue to constrain their further commercialization.Herein,we propose a thermally mediated in situ repair and encapsulation strategy to construct high-performance PSCs by incorporating piperazine thioctic acid salt(TAPPZ)as a dopant into the perovskite precursor Thermally dissociated piperazine(PPZ)from TAPPZ integrates microcrystals to form larger grain(>2000 nm),while the carboxylic acid in thioctic acid(TA)and the amine salt in TAPPZ synergistically passivate and transform PbI_(2),significantly reducing its residual amount.Additionally,TAPPZ undergoe thermal self-crosslinking during perovskite annealing,enabling melt-polymerization to form in situ encapsulation for enhanced water resistance.The TAPPZ-incorporated device achieves a remarkable efficiency of 25.65% and exhibits excellent operational stability,retaining over 90% of its initial efficiency after 2000 h under ambient conditions(20-30℃,20%-30% relative humidity).This study provide new insights into the construction of high-performance perovskite solar cells by designing and synthe sizing multifunctional single molecules for in situ repair and encapsulation of perovskites.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR101)
文摘Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
基金supported by the National Key Research and Development Program(2019YFC1606704)the Key Research and Development Program of Shaanxi Province(2022NY-013)+1 种基金National Natural Science Foundation of China(31801653)the Natural Science Foundation of Shaanxi Province(2019JQ-722).
文摘Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)the National Natural Science Foundation of China(Nos.31901776 and 32072181)+1 种基金Agricultural Science and Technology Innovation Program(No.CAAS-ASTIP-2021-IFST-SN2021-05)received a China Scholarship Council(CSC)Scholarship to visit the University of Waterloo。
文摘Polymerase chain reactions(PCR)are a very important tool for use in cloning,nucleic acid sequencing and diagnostic testing.The storage conditions of PCR reagents are limited to freezing and a lot of mixing steps are needed.In this paper,we report using metal ions to form coordination nanomaterials with the intrinsic components of the PCR reagents including dNTP,DNA primers and DNA polymerase as an integrated PCR reaction system.To complete PCR reactions,users need only to dissolve the coordination nanomaterials with a buffer and add template DNA.A few transition metal ions were screened and Cu^(2+)was found to be the most effective metal ion for this purpose.Then the encapsulation efficiency of PCR reagents was measured,which can reach close to 100%for the primers and DNA polymerase,but only 10%for dNTP because dNTP was excess.Further study also exhibited this integrated PCR reaction system can be used for DNA detection with a similar detection limit to the normal PCR,and showed good stability of encapsulated PCR nanomaterial after storage for a week.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200℃ and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
基金supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX2021006)the National Natural Science Foundation of China(Grant Nos.91860203,51727804,and 52130205)the Fundamental Research Funds for the Central Universities(Grant No.3102019TS0409).
文摘Herein,nanosized Hf_(6)Ta_(2)O_(17) encapsulated graphite flakes were firstly constructed using the sol-gel method,then deposited on the surface of carbon/carbon(C/C)composites by plasma spraying technique to prolong their service span in critical environments.Nanoindentation results affirmed the active influ-ence of graphite flakes on elevating the toughness of the Hf_(6)Ta_(2)O_(17) coating.Besides,after being exposed to the oxyacetylene torch with a peak temperature of about 2000℃,the sample achieved near zero ab-lation(0.06 mg/s),meanwhile its porosity and mass ablation rate showed 39.5%and 60.0%reduction when compared to pure Hf_(6)Ta_(2)O_(17) sample.During exposure,the external Hf_(6)Ta_(2)O_(17) served as an oxy-gen barrier for internal graphite flakes,inversely internal graphite flakes provided a“pinning”effect on external Hf_(6)Ta_(2)O_(17),which accounted for its exceptional ablation performance.This work offers a new insight into the design of surface modification of C/C composites and other high-temperature structural materials.
基金funded by the National Natural Science Foundation of China(32001676)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2022QNRC001).
文摘The prevalence of iron deficiency anemia(IDA)remains high in infants,resulting in growth retardation,neurodevelopmental impairment,immunodeficiency and other irreversible injuries.Efficient and safe iron supplementation for infants has been the goal of recent research.This study aims to investigate the effect of encapsulated ferric pyrophosphate(FePP)on intestinal inflammation and gut microbiota in IDA suckling rats.Newborn Sprague-Dawley rats were gavaged with low and high doses of FePP and FeSO4(2 and 10 mg Fe/kg BW,respectively)during postnatal days 2-14,while the Ctrl group was gavaged with saline.Results showed that FePP supplementation was as effective as FeSO4 in promoting growth,alleviating anemia and restoring body iron levels.Both low and high doses of FePP could significantly down-regulate the expression of pro inflammatory cytokines in the colon to the level similar to that in the Ctrl group(P>0.05).However,the high dose of FeSO4 did not show a down-regulation effect.Compared with the Ctrl group,IDA caused a disturbance of gut microbiota composition in suckling rats,and FePP could restore this dysbiosis.Besides,FePP was more beneficial than FeSO4 in increasing the abundance of beneficial bacteria such as Bacteroides and Akkermansia.Spearman’s correlation analysis showed a correlation between gut microbiota and biochemical indicators such as iron status,pro-inflammatory cytokine expression,and oxidative stress level.Overall,these findings suggested that FePP could effectively improve IDA,and is more effective than FeSO4 in alleviating intestinal inflammation and regulating gut microbiota,which provides a basis for the application of new iron fortificant in infant formula.
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.
文摘Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameters such as the emulsifier and PLGA concentrations, the pH and concentration of the insulin solution, the solvent evaporation method and PVA in the internal phase were investigated for the encapsulation efficiency. The results indicated that higher emulsifier concentration, relatively less amount of PLGA and lower insulin concentration would increase the entrapment of insulin. Furthermore, pH of insulin solution approaching to pI (5.3), adding some PVA to the internal phase and a shorter evaporation time helped to enhance the incorporation efficiency of insulin. Optimized preparation parameters led to nanoparticles with well-defined characteristics such as an average size around 149.6 nm, a polydispersity lower than 0.1 and high encapsulation efficiency up to 42.8%.