期刊文献+
共找到57,111篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of the solid-liquid interface using a novel hybrid corrosion inhibitor to improve Al-air battery performance
1
作者 Peng Zhang Wei Peng +4 位作者 Jing Miao Guohong Ren Yang Wang Yihong Li Pengju Zhang 《Journal of Energy Chemistry》 2025年第5期69-78,共10页
Aluminum-air batteries(AABs)are considered the most promising candidates in advanced clean energy conversion and storage due to their low density,high specific energy,and abundant aluminum resources;however,the develo... Aluminum-air batteries(AABs)are considered the most promising candidates in advanced clean energy conversion and storage due to their low density,high specific energy,and abundant aluminum resources;however,the development of AABs is constrained by inevitable parasitic side reactions and anodic surface passivation film formation.The present work introduced an innovative hybrid corrosion inhibitor consisting of potassium stannate,decyl glucoside,and 1,10-decanedithiol to regulate solid-liquid interface reactions in alkaline AABs.The findings indicated that the optimal hybrid corrosion inhibitor could reduce the hydrogen evolution rate from 0.2095 to 0.0406 mL cm^(-2)min^(-1),achieving an inhibition efficiency of 80.62%.The surface analysis discussed in detail the evolution process of the solid-liquid interface after the introduction of the hybrid corrosion inhibitor into the battery.Experiments and theoretical calculations revealed that decyl glucoside enhanced the adsorption and coverage efficiency of the hybrid corrosion inhibitor through the“micelle solubilization”effect and optimized the structure and properties of the solid-liquid interface.This study also contributed valuable insights into the corrosion inhibition mechanism at the solid-liquid interface of alkaline AABs. 展开更多
关键词 Aluminum-air battery Al-1080 anode Self-corrosion Hybrid corrosion inhibitor solid-liquid interface
在线阅读 下载PDF
Mathematical Modelling of Particle Movement Ahead of the Solid-liquid Interface in Continuous Casting 被引量:4
2
作者 HongLEI YongliJIN +1 位作者 MiaoyongZHU JichengHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期403-406,共4页
Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the parti... Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface. 展开更多
关键词 Continuous casting. Particle Fluid flow solid-liquid interface Mathematical model
在线阅读 下载PDF
Self-assembly of nanoparticles at solid-liquid interface for electrochemical capacitors 被引量:2
3
作者 Xue Li Chen Chen +3 位作者 Qian Niu Nian-Wu Li Le Yu Bao Wang 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3591-3611,共21页
Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review s... Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed. 展开更多
关键词 SELF-ASSEMBLY solid-liquid interface Driving force Electrochemical capacitors
原文传递
Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718 被引量:1
4
作者 WANG Ling DONG Jian-xin +1 位作者 LIU Lin ZHANG Mai-cang 《China Foundry》 SCIE CAS 2007年第3期182-185,共4页
The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showe... The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate,but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely. 展开更多
关键词 Inconel 718 cooling rate MICROSTRUCTURE fractal dimension solid-liquid interface
在线阅读 下载PDF
Apparent Active Adsorption Force at a Solid-Liquid Interface with Active Adsorption
5
作者 冼爱萍 斯重遥 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第3期182-186,共5页
The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case... The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case of active adsorption.The authors suggest a new force“apparent active adsorption force”βto take part in the balance at the three interface lines of contact in the solid-liquid-vapor phases,its dimen- sion isβ=Σα_iRT(Γ_i^(sl)-Γ_i^(sv)+Γ_i^(lv)cosθ),and its direction is dependent on the sign of β,whenβis a positive, the direction is agree with surface tension of the sol- id-vapor interface γ and vice versa. 展开更多
关键词 solid-liquid interface surface tension WETTING ADSORPTION THERMODYNAMICS
在线阅读 下载PDF
In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging 被引量:3
6
作者 Yuanhao Dong Sansan Shuai +4 位作者 Tianxiang Zheng Jiawei Cao Chaoyue Chen Jiang Wang Zhongming Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第4期113-123,共11页
The morphological instability of solid/liquid(S/L)interface during solidification will result in different patterns of microstructure.In this study,two dimension(2 D)and three dimension(3 D)in-situ observation of soli... The morphological instability of solid/liquid(S/L)interface during solidification will result in different patterns of microstructure.In this study,two dimension(2 D)and three dimension(3 D)in-situ observation of solid/liquid interfacial morphology transition in Al-Zn alloy during directional solidification were performed via X-ray imaging.Under a condition of increasing temperature gradient(G),the interface transition from dendritic pattern to cellular pattern,and then to planar growth with perturbation was captured.The effect of solidification parameter(the ratio of temperature gradient and growth velocity(v),G/v)on morphological instabilities was investigated and the experimental results were compared to classical"constitutional supercooling"theory.The results indicate that 2 D and 3 D evolution process of S/L interface morphology under the same thermal condition are different.It seems that the S/L interface in 2 D observation is easier to achieve planar growth than that in 3 D,implying higher S/L interface stability in 2 D thin plate samples.This can be explained as the restricted liquid flow under 2 D solidification which is beneficial to S/L interface stability.The in-situ observation in present study can provide coherent dataset for microstructural formation investigation and related model validation during solidification. 展开更多
关键词 AL-ZN ALLOY Directional SOLIDIFICATION Solid/liquid interface INSTABILITY IN-SITU observation X-ray imaging
原文传递
Simulation of the Influence of Pulsed Magnetic Field on the Superalloy Melt with the Solid-Liquid Interface in Directional Solidification 被引量:5
7
作者 Kuiliang Zhang Yingju Li Yuansheng Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1442-1454,共13页
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the elect... The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface. 展开更多
关键词 Pulsed magnetic field Solid–liquid interface SIMULATION Electromagnetic force Melt convection Superalloy
原文传递
Prediction of Solid-Liquid Interface Stability by Coupling M-S Model with CALPHAD Method
8
作者 RuijieZHANG ZhiHE +1 位作者 ZhongweiCHEN WanqiJIE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期466-468,共3页
A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct... A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct) alloys, and the predicted results were compared with some former experimental data of the two alloys. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical one based on constant parameter assumptions. 展开更多
关键词 interface stability CALPHAD method Unidirectional solidification
在线阅读 下载PDF
THE MICRO-MORPHOLOGY OF THE SOLID-LIQUID INTERFACE ON CZOCHRALSKI-GROWN LiNbO_(3 )SINGLE CRYSTAL
9
作者 JIN Weiqing JIN Jiren ZHOU Weiqing 《Chinese Physics Letters》 SCIE CAS 1987年第4期181-184,共4页
The micro-morphology of the interface transition from(0112)facet to freezing isotherm curve has been observed.In the centre of the interface(the high supercooling region), the morphology of(0112)facet shows characteri... The micro-morphology of the interface transition from(0112)facet to freezing isotherm curve has been observed.In the centre of the interface(the high supercooling region), the morphology of(0112)facet shows characteristics of terrace-step-kink structure.By reducing supercoolings the growth interface gradually turn to agreeing with the freezing isotherm curve. 展开更多
关键词 structure. interface FREEZING
原文传递
Effect of current density on distribution coefficient of solute at solid-liquid interface 被引量:1
10
作者 常国威 王自东 +1 位作者 吴春京 胡汉起 《中国有色金属学会会刊:英文版》 CSCD 2003年第1期131-134,共4页
When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interface energy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation betw... When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interface energy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation between the distribution of solute at solid-liquid interface and current density was established, and the effect of current on the distribution coefficient of solute through effecting the rate of crystal growth, the solid-liquid interface energy and the radius of curvature at the dendritic tip was discussed. The results show that as the current density increases, the distribution coefficient of solute tends to rise in a whole, and when the former is larger than about 400 A/cm 2, the latter varies significantly. 展开更多
关键词 金属凝固 分配系数 电流密度 晶体生长度 固液界面 枝晶 树枝尖弯曲半径
在线阅读 下载PDF
Brain-computer interfaces re-shape functional neurosurgery
11
作者 Thomas Kinfe Steffen Brenner Nima Etminan 《Neural Regeneration Research》 2026年第3期1122-1123,共2页
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography... Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019). 展开更多
关键词 microelectrode arraysthe brain computer interfaces ELECTROENCEPHALOGRAPHY ELECTROCORTICOGRAPHY interface central peripheral nervous system non invasive neurotechnologies functional neurosurgery microelectrode arrays
暂未订购
Recent advances and perspectives in interface engineering of high-performance alloys
12
作者 Yuan Zhu Tongbo Jiang +7 位作者 Honghui Wu Faguo Hou Xiaoye Zhou Feiyang Wang Shuize Wang Junheng Gao Haitao Zhao Chaolei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期53-67,共15页
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t... High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys. 展开更多
关键词 interface engineering crystallographic boundary chemical boundary alloy design
在线阅读 下载PDF
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
13
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape MICROSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
14
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Appropriate FeF_(2) enhancing interface stability of lithium battery with solid-liquid hybrid electrolyte
15
作者 TONG Yi-ting LI Zhuo-jie +3 位作者 PEI Quan ZHANG Qing-feng XIE Shu-hong CHEN JingKey Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education 《Journal of Central South University》 2025年第10期3781-3792,共12页
Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state elect... Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application.In this work,the solid-liquid hybrid electrolyte S-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)-LE05(S-LATP-LE05)(LATP:Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3))sheet is prepared by dropping liquid electrolyte(LE)with appropriate FeF_(2) into spark plasma sintering S-LATP(solid-liquid hybrid electrolyte),which shows high-density and high-ionic-conductivity(5.78×10^(-4) S/cm).When the amount of FeF_(2) is 0.5 wt%,the interfacial properties between the anode and electrolyte are improved,and the S-LATP is well protected by LiF-rich(solid electrolyte interface)(SEI)interface in cycling process.The Li|S-LATP-LE05|Li symmetric battery and full battery show better electrochemical performance and stability relatively.The overpotential of the Li|S-LATP-LE05|Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h,revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively.The Li|S-LATP-LE05|LiFePO_(4) full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles.The corresponding coulombic efficiency is about 99.9%and displays better rate performance compared with the battery without FeF_(2) LE. 展开更多
关键词 Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3) spark plasma sintering solid-liquid hybrid electrolyte interface modification
在线阅读 下载PDF
Electrolyte effects at solid-liquid interfaces in electrocatalysis:From fundamentals to electrolyte engineering
16
作者 Xianwei Liu Xianrong Zhang +11 位作者 Yuanqing Shen Haikui Gao Yuetong Wang Xiaomin Han Xulai Gong Ruitian Kou Jiaqi Liu Canjie Zhang Jiyao Liu Linjie Zhao Baoguang Mao Chuangang Hu 《Nano Research Energy》 2025年第4期256-279,共24页
The universality and atomic-level structure of solid-liquid interfaces critically govern functionality across chemical,biological,and geological systems.In electrocatalysis,this interfacial structure dictates reaction... The universality and atomic-level structure of solid-liquid interfaces critically govern functionality across chemical,biological,and geological systems.In electrocatalysis,this interfacial structure dictates reaction thermodynamics and kinetics.However,fundamental understanding of structure-property relationships and their correlation with preferential reaction pathways remains incomplete.While conventional models emphasize adsorbate-surface covalent bonding and long-range electrode-electrolyte electrostatic interactions,emerging evidence highlights the significant impact of noncovalent adsorbate-electrolyte interactions on the electrical double layer(EDL)structure and electrocatalytic kinetics.Critically,both electrode and electrolyte co-determine catalytic performance.Despite advances in catalyst design,the electrolyte's role in modulating the local interfacial environment is inadequately understood,hindering optimization of activity,selectivity,and stability.Elucidating interfacial electrolyte effects is thus paramount,equaling the importance of intrinsic catalyst properties.This review commences by evaluating established and emerging theoretical frameworks describing the electrochemical solid-liquid interphase.Progressing to mechanistic insights,we decipher the role of electrolyte composition-specifically cation/anion speciation,concentration,and pH-in modulating the activity and selectivity of core electrocatalytic reactions.Critical assessment follows of state-of-the-art operando spectroscopic and scattering methodologies for resolving the dynamic evolution of buried interfaces.We conclude by delineating fundamental knowledge gaps and strategic research trajectories for electrolyte engineering to advance electrocatalytic microenvironments. 展开更多
关键词 ELECTROCATALYSIS electrode-electrolyte interface electrical double layer electrolyte effects
在线阅读 下载PDF
Electrostatic charging at the solid-liquid interface:Strategies for liquid flow sensing
17
作者 Yan Araujo Santos da Campo Kelly Schneider Moreira +1 位作者 Ezequiel Lorenzett Thiago Augusto Lima Burgo 《Friction》 2025年第2期39-48,共10页
A particular kind of triboelectrification occurs during the flow of liquids through tubes.Here,we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polyt... A particular kind of triboelectrification occurs during the flow of liquids through tubes.Here,we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polytetrafluorethylene tube.An excess of positive charges was observed in all liquids collected by the Faraday cup after the flow.While the tube displays a small potential during the flow,likely due to electrokinetic effects,a very high negative potential was observed after the completion of the flow.Aqueous solutions with varying pH showed significant differences in charge accumulation only at pH 2.93 and 4.99,while most of the charge accumulation can be suppressed using common surfactants.Alcohols displayed an inverse relationship between charge accumulation and carbon chain length,except for methanol.Thus,we used graphite-based nanocomposites as noncontact induction electrodes near the tube for flow sensing.A proof of concept was conducted using these induction electrodes to differentiate between water and ethanol flowing inside the tube,which was repeated thousands of times.Finally,the output voltage signal from the induction electrode was processed through an input signal filter and a microcontroller,where four lightemitting diodes(LEDs)were incorporated to indicate the flow and type of liquid. 展开更多
关键词 contact charging flow electrification sensors solid-water interface NANOCOMPOSITE electric double layer
原文传递
Droplet-Enabled Controllable Manipulation of Tribo-Charges from Liquid-Solid Interface 被引量:1
18
作者 Xunjia Li Jianjun Luo +1 位作者 Jianfeng Ping Zhong Lin Wang 《Engineering》 2025年第2期132-142,共11页
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg... Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science. 展开更多
关键词 solid-liquid interface engineering Energy harvesting device Triboelectric nanogenertor interface charge utilization Water energy
在线阅读 下载PDF
Mechanism of thermoviscoelasticity driven solid-liquid interface reducing friction for polymer alloy coating 被引量:2
19
作者 Sheng TAN Yimin LUO +5 位作者 Junhua YANG Wei WANG Xia LI Baoguang JIA Zhuangzhu LUO Guangan ZHANG 《Friction》 SCIE EI CAS CSCD 2023年第9期1606-1623,共18页
High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient sup... High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient supply of lubricating oil and grease.Traditional self-lubricating coatings prepared by inorganic,organic or organic-inorganic hybrid methods are prone to be oxidated at high temperatures to lose their friction reducing function,so that it is difficult to meet the engineering requirements of high-temperature lubrication.We design viscoelastic polymer coatings by a high-temperature self-lubricating and wear-resistant strategy.Polytetrafluoroethylene(PTFE,T_(m)=329℃)and polyphenylene sulfide(PPS,T_(g)=84℃,T_(m)=283℃)are used to prepare a PTFE/PPS polymer alloy coating.As the temperature increases from 25 to 300℃,the PTFE/PPS coating softens from glass state to viscoelastic state and viscous flow state,which is owing to the thermodynamic transformation characteristic of the PPS component.Additionally the friction coefficient(μ)decreased from 0.096 to 0.042 with the increasing of temperature from 25 to 300℃.The mechanism of mechanical deformation and surface morphology evolution for the PTFE/PPS coating under the multi-field coupling action of temperature(T),temperature–centrifugal force(T–F_(ω)),temperature–centrifugal force–shearing force(T–F_(ω)–F_(τ))were investigated.The physical model of“thermoviscoelasticity driven solid–liquid interface reducing friction”is proposed to clarify the self-lubricating mechanism determined by the high-temperature viscoelastic properties of polymers.The high-temperature adjusts the viscosity(η)of the coating,increases interface slipping and intensifies shear deformation(τ),reducing the friction coefficient.The result is expected to provide a new idea for designing anti-ablation coatings served in high temperature friction and wear conditions. 展开更多
关键词 SELF-LUBRICATING polymer coating viscoelastic state solid-liquid interface friction reduction hightemperature tribology
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部