Aluminum-air batteries(AABs)are considered the most promising candidates in advanced clean energy conversion and storage due to their low density,high specific energy,and abundant aluminum resources;however,the develo...Aluminum-air batteries(AABs)are considered the most promising candidates in advanced clean energy conversion and storage due to their low density,high specific energy,and abundant aluminum resources;however,the development of AABs is constrained by inevitable parasitic side reactions and anodic surface passivation film formation.The present work introduced an innovative hybrid corrosion inhibitor consisting of potassium stannate,decyl glucoside,and 1,10-decanedithiol to regulate solid-liquid interface reactions in alkaline AABs.The findings indicated that the optimal hybrid corrosion inhibitor could reduce the hydrogen evolution rate from 0.2095 to 0.0406 mL cm^(-2)min^(-1),achieving an inhibition efficiency of 80.62%.The surface analysis discussed in detail the evolution process of the solid-liquid interface after the introduction of the hybrid corrosion inhibitor into the battery.Experiments and theoretical calculations revealed that decyl glucoside enhanced the adsorption and coverage efficiency of the hybrid corrosion inhibitor through the“micelle solubilization”effect and optimized the structure and properties of the solid-liquid interface.This study also contributed valuable insights into the corrosion inhibition mechanism at the solid-liquid interface of alkaline AABs.展开更多
Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the parti...Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.展开更多
Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review s...Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.展开更多
The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showe...The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate,but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.展开更多
The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case...The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case of active adsorption.The authors suggest a new force“apparent active adsorption force”βto take part in the balance at the three interface lines of contact in the solid-liquid-vapor phases,its dimen- sion isβ=Σα_iRT(Γ_i^(sl)-Γ_i^(sv)+Γ_i^(lv)cosθ),and its direction is dependent on the sign of β,whenβis a positive, the direction is agree with surface tension of the sol- id-vapor interface γ and vice versa.展开更多
The morphological instability of solid/liquid(S/L)interface during solidification will result in different patterns of microstructure.In this study,two dimension(2 D)and three dimension(3 D)in-situ observation of soli...The morphological instability of solid/liquid(S/L)interface during solidification will result in different patterns of microstructure.In this study,two dimension(2 D)and three dimension(3 D)in-situ observation of solid/liquid interfacial morphology transition in Al-Zn alloy during directional solidification were performed via X-ray imaging.Under a condition of increasing temperature gradient(G),the interface transition from dendritic pattern to cellular pattern,and then to planar growth with perturbation was captured.The effect of solidification parameter(the ratio of temperature gradient and growth velocity(v),G/v)on morphological instabilities was investigated and the experimental results were compared to classical"constitutional supercooling"theory.The results indicate that 2 D and 3 D evolution process of S/L interface morphology under the same thermal condition are different.It seems that the S/L interface in 2 D observation is easier to achieve planar growth than that in 3 D,implying higher S/L interface stability in 2 D thin plate samples.This can be explained as the restricted liquid flow under 2 D solidification which is beneficial to S/L interface stability.The in-situ observation in present study can provide coherent dataset for microstructural formation investigation and related model validation during solidification.展开更多
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the elect...The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface.展开更多
A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct...A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct) alloys, and the predicted results were compared with some former experimental data of the two alloys. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical one based on constant parameter assumptions.展开更多
The micro-morphology of the interface transition from(0112)facet to freezing isotherm curve has been observed.In the centre of the interface(the high supercooling region), the morphology of(0112)facet shows characteri...The micro-morphology of the interface transition from(0112)facet to freezing isotherm curve has been observed.In the centre of the interface(the high supercooling region), the morphology of(0112)facet shows characteristics of terrace-step-kink structure.By reducing supercoolings the growth interface gradually turn to agreeing with the freezing isotherm curve.展开更多
When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interface energy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation betw...When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interface energy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation between the distribution of solute at solid-liquid interface and current density was established, and the effect of current on the distribution coefficient of solute through effecting the rate of crystal growth, the solid-liquid interface energy and the radius of curvature at the dendritic tip was discussed. The results show that as the current density increases, the distribution coefficient of solute tends to rise in a whole, and when the former is larger than about 400 A/cm 2, the latter varies significantly.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state elect...Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application.In this work,the solid-liquid hybrid electrolyte S-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)-LE05(S-LATP-LE05)(LATP:Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3))sheet is prepared by dropping liquid electrolyte(LE)with appropriate FeF_(2) into spark plasma sintering S-LATP(solid-liquid hybrid electrolyte),which shows high-density and high-ionic-conductivity(5.78×10^(-4) S/cm).When the amount of FeF_(2) is 0.5 wt%,the interfacial properties between the anode and electrolyte are improved,and the S-LATP is well protected by LiF-rich(solid electrolyte interface)(SEI)interface in cycling process.The Li|S-LATP-LE05|Li symmetric battery and full battery show better electrochemical performance and stability relatively.The overpotential of the Li|S-LATP-LE05|Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h,revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively.The Li|S-LATP-LE05|LiFePO_(4) full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles.The corresponding coulombic efficiency is about 99.9%and displays better rate performance compared with the battery without FeF_(2) LE.展开更多
The universality and atomic-level structure of solid-liquid interfaces critically govern functionality across chemical,biological,and geological systems.In electrocatalysis,this interfacial structure dictates reaction...The universality and atomic-level structure of solid-liquid interfaces critically govern functionality across chemical,biological,and geological systems.In electrocatalysis,this interfacial structure dictates reaction thermodynamics and kinetics.However,fundamental understanding of structure-property relationships and their correlation with preferential reaction pathways remains incomplete.While conventional models emphasize adsorbate-surface covalent bonding and long-range electrode-electrolyte electrostatic interactions,emerging evidence highlights the significant impact of noncovalent adsorbate-electrolyte interactions on the electrical double layer(EDL)structure and electrocatalytic kinetics.Critically,both electrode and electrolyte co-determine catalytic performance.Despite advances in catalyst design,the electrolyte's role in modulating the local interfacial environment is inadequately understood,hindering optimization of activity,selectivity,and stability.Elucidating interfacial electrolyte effects is thus paramount,equaling the importance of intrinsic catalyst properties.This review commences by evaluating established and emerging theoretical frameworks describing the electrochemical solid-liquid interphase.Progressing to mechanistic insights,we decipher the role of electrolyte composition-specifically cation/anion speciation,concentration,and pH-in modulating the activity and selectivity of core electrocatalytic reactions.Critical assessment follows of state-of-the-art operando spectroscopic and scattering methodologies for resolving the dynamic evolution of buried interfaces.We conclude by delineating fundamental knowledge gaps and strategic research trajectories for electrolyte engineering to advance electrocatalytic microenvironments.展开更多
A particular kind of triboelectrification occurs during the flow of liquids through tubes.Here,we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polyt...A particular kind of triboelectrification occurs during the flow of liquids through tubes.Here,we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polytetrafluorethylene tube.An excess of positive charges was observed in all liquids collected by the Faraday cup after the flow.While the tube displays a small potential during the flow,likely due to electrokinetic effects,a very high negative potential was observed after the completion of the flow.Aqueous solutions with varying pH showed significant differences in charge accumulation only at pH 2.93 and 4.99,while most of the charge accumulation can be suppressed using common surfactants.Alcohols displayed an inverse relationship between charge accumulation and carbon chain length,except for methanol.Thus,we used graphite-based nanocomposites as noncontact induction electrodes near the tube for flow sensing.A proof of concept was conducted using these induction electrodes to differentiate between water and ethanol flowing inside the tube,which was repeated thousands of times.Finally,the output voltage signal from the induction electrode was processed through an input signal filter and a microcontroller,where four lightemitting diodes(LEDs)were incorporated to indicate the flow and type of liquid.展开更多
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg...Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.展开更多
High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient sup...High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient supply of lubricating oil and grease.Traditional self-lubricating coatings prepared by inorganic,organic or organic-inorganic hybrid methods are prone to be oxidated at high temperatures to lose their friction reducing function,so that it is difficult to meet the engineering requirements of high-temperature lubrication.We design viscoelastic polymer coatings by a high-temperature self-lubricating and wear-resistant strategy.Polytetrafluoroethylene(PTFE,T_(m)=329℃)and polyphenylene sulfide(PPS,T_(g)=84℃,T_(m)=283℃)are used to prepare a PTFE/PPS polymer alloy coating.As the temperature increases from 25 to 300℃,the PTFE/PPS coating softens from glass state to viscoelastic state and viscous flow state,which is owing to the thermodynamic transformation characteristic of the PPS component.Additionally the friction coefficient(μ)decreased from 0.096 to 0.042 with the increasing of temperature from 25 to 300℃.The mechanism of mechanical deformation and surface morphology evolution for the PTFE/PPS coating under the multi-field coupling action of temperature(T),temperature–centrifugal force(T–F_(ω)),temperature–centrifugal force–shearing force(T–F_(ω)–F_(τ))were investigated.The physical model of“thermoviscoelasticity driven solid–liquid interface reducing friction”is proposed to clarify the self-lubricating mechanism determined by the high-temperature viscoelastic properties of polymers.The high-temperature adjusts the viscosity(η)of the coating,increases interface slipping and intensifies shear deformation(τ),reducing the friction coefficient.The result is expected to provide a new idea for designing anti-ablation coatings served in high temperature friction and wear conditions.展开更多
基金supported by the Fundamental Research Program of Shanxi Province(202403021221148)the Taiyuan University of Science and Technology Graduate Education Innovation Project(SY2023001)+1 种基金the Special Funding Projects for Local Science and Technology Development guided by the Central Committee(YDZJSX2022C028)the Shanxi Province Research and Innovation Project(2024KY656)。
文摘Aluminum-air batteries(AABs)are considered the most promising candidates in advanced clean energy conversion and storage due to their low density,high specific energy,and abundant aluminum resources;however,the development of AABs is constrained by inevitable parasitic side reactions and anodic surface passivation film formation.The present work introduced an innovative hybrid corrosion inhibitor consisting of potassium stannate,decyl glucoside,and 1,10-decanedithiol to regulate solid-liquid interface reactions in alkaline AABs.The findings indicated that the optimal hybrid corrosion inhibitor could reduce the hydrogen evolution rate from 0.2095 to 0.0406 mL cm^(-2)min^(-1),achieving an inhibition efficiency of 80.62%.The surface analysis discussed in detail the evolution process of the solid-liquid interface after the introduction of the hybrid corrosion inhibitor into the battery.Experiments and theoretical calculations revealed that decyl glucoside enhanced the adsorption and coverage efficiency of the hybrid corrosion inhibitor through the“micelle solubilization”effect and optimized the structure and properties of the solid-liquid interface.This study also contributed valuable insights into the corrosion inhibition mechanism at the solid-liquid interface of alkaline AABs.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59734080 and 59504006)the Project of National Fundamental Research and Development of China (Grant No. G1998061510) and High-Tech Research and Development Project
文摘Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.
基金financially supported by the National Natural Science Foundation of China(Nos.51772296,5217020858,51902016 and 21975015)the Fundamental Research Funds for the Central Universities(Nos.buctrc201829 and buctrc201904)。
文摘Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.
基金This work was financially supported by the National Natural Science Foundation of China (No.50371006).
文摘The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate,but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.
文摘The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case of active adsorption.The authors suggest a new force“apparent active adsorption force”βto take part in the balance at the three interface lines of contact in the solid-liquid-vapor phases,its dimen- sion isβ=Σα_iRT(Γ_i^(sl)-Γ_i^(sv)+Γ_i^(lv)cosθ),and its direction is dependent on the sign of β,whenβis a positive, the direction is agree with surface tension of the sol- id-vapor interface γ and vice versa.
基金financially supported by National Natural Science Foundation of China(Grants 51690162,51604171 and 51701112)Shanghai Municipal Science and Technology Commission(No.17JC1400602)Shanghai Sailing Program(19YF1415900).
文摘The morphological instability of solid/liquid(S/L)interface during solidification will result in different patterns of microstructure.In this study,two dimension(2 D)and three dimension(3 D)in-situ observation of solid/liquid interfacial morphology transition in Al-Zn alloy during directional solidification were performed via X-ray imaging.Under a condition of increasing temperature gradient(G),the interface transition from dendritic pattern to cellular pattern,and then to planar growth with perturbation was captured.The effect of solidification parameter(the ratio of temperature gradient and growth velocity(v),G/v)on morphological instabilities was investigated and the experimental results were compared to classical"constitutional supercooling"theory.The results indicate that 2 D and 3 D evolution process of S/L interface morphology under the same thermal condition are different.It seems that the S/L interface in 2 D observation is easier to achieve planar growth than that in 3 D,implying higher S/L interface stability in 2 D thin plate samples.This can be explained as the restricted liquid flow under 2 D solidification which is beneficial to S/L interface stability.The in-situ observation in present study can provide coherent dataset for microstructural formation investigation and related model validation during solidification.
基金financially supported by the National Natural Science Foundation of China (No. 51674236)the Key Research and Development Program of Liaoning Province (No.2019JH2/10100009)+1 种基金the National Science and Technology Major Project (No.2017-Ⅵ-0003-0073)the National Key Research and Development Program (No.2018Y-FA0702900)。
文摘The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface.
基金the State Key Fundamental Research Project(G2000067202-1).
文摘A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct) alloys, and the predicted results were compared with some former experimental data of the two alloys. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical one based on constant parameter assumptions.
基金supported by the Science Fund of the Chinese Academy of Sciences。
文摘The micro-morphology of the interface transition from(0112)facet to freezing isotherm curve has been observed.In the centre of the interface(the high supercooling region), the morphology of(0112)facet shows characteristics of terrace-step-kink structure.By reducing supercoolings the growth interface gradually turn to agreeing with the freezing isotherm curve.
文摘When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interface energy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation between the distribution of solute at solid-liquid interface and current density was established, and the effect of current on the distribution coefficient of solute through effecting the rate of crystal growth, the solid-liquid interface energy and the radius of curvature at the dendritic tip was discussed. The results show that as the current density increases, the distribution coefficient of solute tends to rise in a whole, and when the former is larger than about 400 A/cm 2, the latter varies significantly.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金Project(22XJ01007)supported by Xiangjiang Laboratory of Hunan Province,ChinaProject(52202308)supported by the National Natural Science Foundation of ChinaProject(2021RC2092)supported by Science and Technology Innovation Program of Hunan Province,China。
文摘Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application.In this work,the solid-liquid hybrid electrolyte S-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)-LE05(S-LATP-LE05)(LATP:Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3))sheet is prepared by dropping liquid electrolyte(LE)with appropriate FeF_(2) into spark plasma sintering S-LATP(solid-liquid hybrid electrolyte),which shows high-density and high-ionic-conductivity(5.78×10^(-4) S/cm).When the amount of FeF_(2) is 0.5 wt%,the interfacial properties between the anode and electrolyte are improved,and the S-LATP is well protected by LiF-rich(solid electrolyte interface)(SEI)interface in cycling process.The Li|S-LATP-LE05|Li symmetric battery and full battery show better electrochemical performance and stability relatively.The overpotential of the Li|S-LATP-LE05|Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h,revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively.The Li|S-LATP-LE05|LiFePO_(4) full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles.The corresponding coulombic efficiency is about 99.9%and displays better rate performance compared with the battery without FeF_(2) LE.
基金supported by the National Natural Science Foundation of China(52372074 and 52172179)the National Key Research and Development Program of China(2024YFE0211400)+2 种基金the Fundamental Research Funds for the Central Universities(JD2536,buctrc202118 and buctrc202323)the Interdisciplinary Research Center of Beijing University of Chemical Technology(Funding No.XK2023-08)the Beijing-Tianjin-Hebei Basic Research Cooperation Special Project(B2024209048).
文摘The universality and atomic-level structure of solid-liquid interfaces critically govern functionality across chemical,biological,and geological systems.In electrocatalysis,this interfacial structure dictates reaction thermodynamics and kinetics.However,fundamental understanding of structure-property relationships and their correlation with preferential reaction pathways remains incomplete.While conventional models emphasize adsorbate-surface covalent bonding and long-range electrode-electrolyte electrostatic interactions,emerging evidence highlights the significant impact of noncovalent adsorbate-electrolyte interactions on the electrical double layer(EDL)structure and electrocatalytic kinetics.Critically,both electrode and electrolyte co-determine catalytic performance.Despite advances in catalyst design,the electrolyte's role in modulating the local interfacial environment is inadequately understood,hindering optimization of activity,selectivity,and stability.Elucidating interfacial electrolyte effects is thus paramount,equaling the importance of intrinsic catalyst properties.This review commences by evaluating established and emerging theoretical frameworks describing the electrochemical solid-liquid interphase.Progressing to mechanistic insights,we decipher the role of electrolyte composition-specifically cation/anion speciation,concentration,and pH-in modulating the activity and selectivity of core electrocatalytic reactions.Critical assessment follows of state-of-the-art operando spectroscopic and scattering methodologies for resolving the dynamic evolution of buried interfaces.We conclude by delineating fundamental knowledge gaps and strategic research trajectories for electrolyte engineering to advance electrocatalytic microenvironments.
基金supported by the Brazilian agencies MCTIC/CNPq(465452/2014-0),FAPESP(2014/50906-9),and CAPES-Finance Code 001 through INCT/INOMAT(National Institute for Complex Functional Materials)and MCT/Finep/CT-Infra 02/2010.Yan Araujo Santos da Campo acknowledges CAPES(88887.674802/2022-00)for receiving a master’s degree fellowship.Authors have used large language models(ChatGTP)to improve readability and language.
文摘A particular kind of triboelectrification occurs during the flow of liquids through tubes.Here,we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polytetrafluorethylene tube.An excess of positive charges was observed in all liquids collected by the Faraday cup after the flow.While the tube displays a small potential during the flow,likely due to electrokinetic effects,a very high negative potential was observed after the completion of the flow.Aqueous solutions with varying pH showed significant differences in charge accumulation only at pH 2.93 and 4.99,while most of the charge accumulation can be suppressed using common surfactants.Alcohols displayed an inverse relationship between charge accumulation and carbon chain length,except for methanol.Thus,we used graphite-based nanocomposites as noncontact induction electrodes near the tube for flow sensing.A proof of concept was conducted using these induction electrodes to differentiate between water and ethanol flowing inside the tube,which was repeated thousands of times.Finally,the output voltage signal from the induction electrode was processed through an input signal filter and a microcontroller,where four lightemitting diodes(LEDs)were incorporated to indicate the flow and type of liquid.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22C130001)the National Natural Science Foundation of China(32171887,and 52002028,and 52192610)+1 种基金the National Key Research and Development Project from Minister of Science&Technology(2021YFA0202704)Beijing Municipal Science&Technology Commission(Z171100002017017).
文摘Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(No.52075560).
文摘High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient supply of lubricating oil and grease.Traditional self-lubricating coatings prepared by inorganic,organic or organic-inorganic hybrid methods are prone to be oxidated at high temperatures to lose their friction reducing function,so that it is difficult to meet the engineering requirements of high-temperature lubrication.We design viscoelastic polymer coatings by a high-temperature self-lubricating and wear-resistant strategy.Polytetrafluoroethylene(PTFE,T_(m)=329℃)and polyphenylene sulfide(PPS,T_(g)=84℃,T_(m)=283℃)are used to prepare a PTFE/PPS polymer alloy coating.As the temperature increases from 25 to 300℃,the PTFE/PPS coating softens from glass state to viscoelastic state and viscous flow state,which is owing to the thermodynamic transformation characteristic of the PPS component.Additionally the friction coefficient(μ)decreased from 0.096 to 0.042 with the increasing of temperature from 25 to 300℃.The mechanism of mechanical deformation and surface morphology evolution for the PTFE/PPS coating under the multi-field coupling action of temperature(T),temperature–centrifugal force(T–F_(ω)),temperature–centrifugal force–shearing force(T–F_(ω)–F_(τ))were investigated.The physical model of“thermoviscoelasticity driven solid–liquid interface reducing friction”is proposed to clarify the self-lubricating mechanism determined by the high-temperature viscoelastic properties of polymers.The high-temperature adjusts the viscosity(η)of the coating,increases interface slipping and intensifies shear deformation(τ),reducing the friction coefficient.The result is expected to provide a new idea for designing anti-ablation coatings served in high temperature friction and wear conditions.